Skip to main content

Advertisement

Log in

Identification and Characterization of Non-protein Coding RNA Homologs in Serratia Marcescens by Comparative Transcriptomics

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The Serratia marcescens is a Gram-negative bacterium from the Enterobacteriaceae family. Recently, S. marcescens have evolved to become a versatile and opportunistic pathogen. Furthermore, this bacterium is also a multi-drug resistant pathogen exhibiting Extended-Spectrum Beta-Lactamases (ESBL) activity. This bacterium is highly associated with infections in healthcare settings and even leads to death. Hence, an advanced approach based on non-protein coding RNA (npcRNA) of S. marcescens was considered in this study to understand its regulatory roles in virulence, pathogenesis, and the differential expression of these transcripts in various growth phases of the bacterium. BLASTn search of known npcRNAs from Salmonella typhi, Escherichia coli, and Yersinia pestis against S. marcescens was performed to discover putative conserved homologous transcripts. The novelty of these putative homologous npcRNAs was verified by screening through the Rfam web tool. The target mRNA for the homologs was predicted via the TargetRNA2 webtool to understand the possible regulatory roles of these transcripts. The npcRNA homologs, which were predicted to regulate virulence target mRNA were assessed for their expression profile at different growth stages via reverse transcription PCR and the band intensity was quantitatively analysed using the Image J tool. The known npcRNA ssrS, from S. typhi showed expression in S. marcescens during three growth stages (lag, log, and stationary). Expression was observed to be high during the lag phase followed by a similarly low-level expression during the log and no expression during stationary phase. This ssrS homolog was predicted to regulate mRNA that encodes for protein FliR, which is associated with virulence. This is a preliminary study that lay the foundation for further elucidation of more virulence-associated npcRNAs that are yet to be discovered from S. marcescens, which can be useful for diagnostics and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kljakić D, Milosavljević MZ, Jovanović M, Popović VČ, Raičević S (2021) Serratia marcescens as a cause of unfavorable outcome in the twin pregnancy. Open Med 16:81–86

    Article  Google Scholar 

  2. Khanna A, Khanna M, Aggarwal A (2013) Serratia marcescens-a rare opportunistic nosocomial pathogen and measures to limit its spread in hospitalized patients. J Clin Diagn Res JCDR 7:243

    PubMed  Google Scholar 

  3. Ferreira RL, Rezende GS, Damas MSF, Oliveira-Silva M, Pitondo-Silva A, Brito MC, Leonardecz E, de Góes FR, Campanini EB, Malavazi I (2020) Characterization of KPC-producing Serratia marcescens in an intensive care unit of a Brazilian tertiary hospital. Front Microbiol 11:956

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gadhiya KP, Goldman J, Panupong H, Balchander D, Cook E, Enriquez K, Smith D (2021) Severe skin infections due to serratia marcescens: a case associated with cat scratch in a patient with liver disease and review of the literature. Infect Dis Clin Pract 29:e146–e150

    Article  Google Scholar 

  5. Herra C, Falkiner FR (2017) Serratia marcescens. Antimicrob Ther Vaccines 1

  6. Subramaniam K, Khaithir TMN, Ding CH, Che Hussin NS (2021) Epidemiology of bloodstream infections in the paediatric population in a Malaysian general hospital over a 2-year period. Malays J Pathol 43:291–301

    CAS  PubMed  Google Scholar 

  7. Chinni SV, Raabe CA, Zakaria R, Randau G, Hoe CH, Zemann A, Brosius J, Tang T-H, Rozhdestvensky TS (2010) Experimental identification and characterization of 97 novel npcRNA candidates in Salmonella enterica serovar Typhi. Nucl Acids Res 38:5893–5908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li R, Zhu H, Luo Y (2016) Understanding the functions of long non-coding RNAs through their higher-order structures. Int J Mol Sci 17:702

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vishwakarma J, Waghela B, Falcao B, Vavilala SL (2022) Algal polysaccharide’s potential to combat respiratory infections caused by Klebsiella pneumoniae and Serratia marcescens biofilms. Appl Biochem Biotechnol 194:671–693

    Article  CAS  PubMed  Google Scholar 

  10. Dar D, Sorek R (2018) Bacterial noncoding RNAs excised from within protein-coding transcripts. MBio 9:e01730-e1818

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krieger MC, Dutcher HA, Ashford AJ, Raghavan R (2022) A Peroxide-responding sRNA evolved from a peroxidase mRNA. Mol Biol Evol 39:msac020. https://doi.org/10.1093/molbev/msac020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. KishanRaj S, Sumitha S, Tang T-H, Citartan M, Chinni SV (2021) Comparative genomic identification and characterization of npcRNA homologs in Proteus vulgaris. J Biosci 46:1–10

    Article  Google Scholar 

  13. Soo Yean CY, Selva Raju K, Xavier R, Subramaniam S, Gopinath SC, Chinni SV (2016) Molecular detection of methicillin-resistant Staphylococcus aureus by non-protein coding RNA-mediated monoplex polymerase chain reaction. PLoS ONE 11:e0158736

    Article  PubMed  PubMed Central  Google Scholar 

  14. KishanRaj S, Sumitha S, Siventhiran B, Thiviyaa O, Sathasivam KV, Xavier R, Tang T-H, Citartan M, Chinni SV (2018) In silico ‘fishing’using known small regulatory RNA (sRNA) candidates as the decoy from Escherichia coli, Salmonella typhi and Salmonella typhimurium manifested 14 novel sRNA candidates in the orthologous region of Proteus mirabilis. Mol Biol Rep 45:2333–2343

    Article  CAS  PubMed  Google Scholar 

  15. Bachman J (2013) Chapter two— reverse-transcription PCR (RT-PCR). In: Lorsch J (ed) Methods in enzymology. Academic Press, Cambridge, pp 67–74

    Chapter  Google Scholar 

  16. Barquist L, Burge SW, Gardner PP (2016) Studying RNA Homology and conservation with infernal: from single sequences to RNA families. Curr Protoc Bioinf 54:12.13.1-12.13.25. https://doi.org/10.1002/cpbi.4

    Article  Google Scholar 

  17. Padalon-Brauch G, Hershberg R, Elgrably-Weiss M, Baruch K, Rosenshine I, Margalit H, Altuvia S (2008) Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucl Acids Res 36:1913–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kröger C, Dillon SC, Cameron AD, Papenfort K, Sivasankaran SK, Hokamp K, Chao Y, Sittka A, Hébrard M, Händler K (2012) The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci 109:E1277–E1286

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sittka A, Lucchini S, Papenfort K, Sharma CM, Rolle K, Binnewies TT, Hinton JC, Vogel J (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator. Hfq PLoS Genet 4:e1000163

    Article  PubMed  Google Scholar 

  20. Hershberg R, Altuvia S, Margalit H (2003) A survey of small RNA-encoding genes in Escherichia coli. Nucl Acids Res 31:1813–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burenina OY, Elkina DA, Ovcharenko A, Bannikova VA, Schlüter MAC, Oretskaya TS, Hartmann RK, Kubareva EA (2022) Involvement of E. coli 6S RNA in oxidative stress response. Int J Mol Sci 23:3653. https://doi.org/10.3390/ijms23073653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kery MB, Feldman M, Livny J, Tjaden B (2014) TargetRNA2: identifying targets of small regulatory RNAs in bacteria. Nucl Acids Res 42:W124–W129. https://doi.org/10.1093/nar/gku317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neusser T, Polen T, Geissen R, Wagner R (2010) Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genom 11:165. https://doi.org/10.1186/1471-2164-11-165

    Article  CAS  Google Scholar 

  24. Qi X, Xu X, Li H, Pan Y, Katharine Kraco E, Zheng J, Lin M, Jiang X (2022) fliA, flrB, and fliR regulate adhesion by controlling the expression of critical virulence genes in Vibrio harveyi. Gene 839:146726. https://doi.org/10.1016/j.gene.2022.146726

    Article  CAS  PubMed  Google Scholar 

  25. Fu Y, Liu W, Liu M, Zhang J, Yang M, Wang T, Qian W (2021) In vitro anti-biofilm efficacy of sanguinarine against carbapenem-resistant Serratia marcescens. Biofouling 37:341–351. https://doi.org/10.1080/08927014.2021.1919649

    Article  CAS  PubMed  Google Scholar 

  26. Shree P, Singh CK, Sodhi KK, Surya JN, Singh DK (2023) Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med Microecol 16:100084. https://doi.org/10.1016/j.medmic.2023.100084

    Article  Google Scholar 

  27. Jiang R, Xiang M, Chen W, Zhang P, Wu X, Zhu G, Tu T, Jiang D, Yao X, Luo Y, Yang Z, Chen D, Wang Y (2021) Biofilm characteristics and transcriptomic analysis of Haemophilus parasuis. Vet Microbiol 258:109073. https://doi.org/10.1016/j.vetmic.2021.109073

    Article  CAS  PubMed  Google Scholar 

  28. Bolourchi N, Noori Goodarzi N, Giske CG, Nematzadeh S, Haririzadeh Jouriani F, Solgi H, Badmasti F (2022) Comprehensive pan-genomic, resistome and virulome analysis of clinical OXA-48 producing carbapenem-resistant Serratia marcescens strains. Gene 822:146355. https://doi.org/10.1016/j.gene.2022.146355

    Article  CAS  PubMed  Google Scholar 

  29. Julio SM, Heithoff DM, Mahan MJ (2000) ssrA (tmRNA) plays a role inSalmonella enterica serovar typhimurium pathogenesis. J Bacteriol 182:1558–1563. https://doi.org/10.1128/jb.182.6.1558-1563.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Higgins CF (2001) ABC transporters: physiology, structure and mechanism – an overview. Res Microbiol 152:205–210. https://doi.org/10.1016/S0923-2508(01)01193-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge The Ministry of Higher Education (KPT), Malaysia for supporting this research by providing the FRGS research Grant (FRGS/1/2022/STG01/MIU/02/1). We would also thank Mila University, Nilai, Malaysia for providing the facilities platform to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selva Raju Kishan Raj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rishen Narayan Dev, B., Kishan Raj, S.R., Chinni, S.V. et al. Identification and Characterization of Non-protein Coding RNA Homologs in Serratia Marcescens by Comparative Transcriptomics. Indian J Microbiol 64, 198–204 (2024). https://doi.org/10.1007/s12088-023-01160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01160-y

Keywords

Navigation