Skip to main content
Log in

A comparative characterization study between fungal and bacterial eumelanin pigments

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Melanins are the most common and the most enigmatic natural pigments in the nature that found in many different taxa group such as bacteria, yeasts, fungi, insects, plants, reptiles, birds and mammals. These biological macromolecules are highly complex cross-linked, heterogeneous biopolymers and composed of polymerized phenolic and/or indolic compounds. Recently, interest in these ubiquitous biopolymers has been increasing considerably in many different areas such as medicine, pharmacology, cosmetics, organic electronic and optoelectronics because of their versatile properties. In this study, four different extracellular eumelanin pigments (two bacterial eumelanins and two fungal eumelanins) were characterized by different spectrometric techniques such as FT-IR, XRD, NMR and UV-vis. In XRD analyzes, purified fungal and bacterial eumelanin pigments were characterized by giving a wide peak at about 22o with an angle of 2θ. Furthermore, in the 1 H NMR spectra of these biopolymers, it was observed that all pigments have signals in both aromatic and aliphatic regions. In addition to these analyzes, nanostructures of these biopolymers were characterized using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Finally, eumelanin pigment producer microorganisms were molecularly characterized. 16 S rDNA and 18 S rDNA sequence analysis results of these microorganisms (Streptomyces fulvissimus MPPS4, Streptomyces xiamenensis MPPS6, Aspergillus niger MPPF16 and Aspergillus terreus MPPF25) were deposited in NCBI GenBank® database with accession number MT825594, MT973972, MW652652 and MW652653 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Solano F (2017) Melanin and melanin-related polymers as materials with biomedical and biotechnological applications—cuttlefish ink and mussel foot proteins as inspired biomolecules. Int J Mol Sci 18(7):1561. https://doi.org/10.3390/ijms18071561

    Article  CAS  PubMed Central  Google Scholar 

  2. Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11(6):525–531. https://doi.org/10.1016/j.mib.2008.09.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schweitzer AD, Revskaya E, Chu P, Pazo V, Friedman M, Nosanchuk JD, Cahill S, Frases S, Casadevall A, Dadachova E (2010) Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. Int J Radiat Oncol Biol Phys 78(5):1494–1502. https://doi.org/10.1016/j.ijrobp.2010.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bayram S, Dengiz C, Gerçek YC, Cetin I, Topcul MR (2020) Bioproduction, structure elucidation and in vitro antiproliferative effect of eumelanin pigment from Streptomyces parvus BSB49. Arch Microbiol 202:2401–2409. https://doi.org/10.1007/s00203-020-01956-2

    Article  CAS  PubMed  Google Scholar 

  5. Zerrad A, Anissi J, Ghanam J, Sendide K, Mohammed EH (2014) Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain. J Biotechnol Lett 5(1):87–94

    Google Scholar 

  6. El-Naggar NA, El-Ewasy SM (2017) Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci Rep 7:42129. https://doi.org/10.1038/srep42129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu P, Li Q, Zhang C, Na Y, Xu L (2017) Bcpks12 gene inactivation substantiates biological functions of sclerotium melanization in Botrytis cinerea. Physiol Mol Plant Pathol 98:80–84. https://doi.org/10.1016/j.pmpp.2017.03.009

    Article  CAS  Google Scholar 

  8. Xiao M, Shawkey MD, Dhinojwala A (2020) Bioinspired melanin-based optically active materials. Adv Opt Mater 8(19):2000932. https://doi.org/10.1002/adom.202000932

    Article  CAS  Google Scholar 

  9. Mostert AB (2021) Melanin, the What, the Why and the How: An Introductory Review for Materials Scientists Interested in Flexible and Versatile Polymers. Polymers 13(10):1670. https://doi.org/10.3390/polym13101670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Banerjee A, Supakar S, Banerjee R (2014) Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization. PLoS ONE 9(1):e84574. https://doi.org/10.1371/journal.pone.0084574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McCallum NC, Son FA, Clemons TD, Weigand SJ, Gnanasekaran K, Battistella C, Gianneschi NC (2021) Allomelanin: A biopolymer of intrinsic microporosity. J Am Chem Soc 143(10):4005–4016. https://doi.org/10.1021/jacs.1c00748

    Article  CAS  PubMed  Google Scholar 

  12. Vila M (2019) Neuromelanin, aging, and neuronal vulnerability in Parkinson’s disease. Mov Disord 34(10):1440–1451. https://doi.org/10.1002/mds.27776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Turick CE, Knox AS, Becnel JM, Ekechukwu AA, Milliken CE (2010) Properties and function of pyomelanin. Biopolymers 449:72. https://doi.org/10.5772/10273

    Article  Google Scholar 

  14. Araújo M, Viveiros R, Correia TR, Correia IJ, Correia VD, Bonifácio T, Casimiro A, Aguiar-Ricardo A (2014) Natural melanin: A potential pH-responsive drug release device. Int J Pharm 469(1):140–145. https://doi.org/10.1016/j.ijpharm.2014.04.051

    Article  CAS  PubMed  Google Scholar 

  15. Park J, Moon H, Hong S (2019) Recent advances in melanin-like nanomaterials in biomedical applications: a mini review. Biomater Res 23(1):1–10. https://doi.org/10.1186/s40824-019-0175-9

    Article  CAS  Google Scholar 

  16. Caldas M, Santos AC, Veiga F, Rebelo R, Reis RL, Correlo VM (2020) Melanin nanoparticles as a promising tool for biomedical applications–a review. Acta Biomat 105:26–43. https://doi.org/10.1016/j.actbio.2020.01.044

    Article  CAS  Google Scholar 

  17. Eskandari S, Etemadifar Z (2021) Melanin biopolymers from newly isolated Pseudomonas koreensis strain UIS 19 with potential for cosmetics application, and optimization on molasses waste medium. J Appl Microbiol 131(3):1331–1343. https://doi.org/10.1111/jam.15046

    Article  CAS  PubMed  Google Scholar 

  18. Roy S, Rhim JW (2021) New insight into melanin for food packaging and biotechnology applications. Crit Rev Food Sci Nutr 1:1–27. https://doi.org/10.1080/10408398.2021.1878097

    Article  CAS  Google Scholar 

  19. Cuzzubbo S, Carpentier AF (2021) Applications of Melanin and Melanin-Like Nanoparticles in Cancer Therapy: A Review of Recent Advances. Cancers 13(6):1463. https://doi.org/10.3390/cancers13061463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paulin JV, Graeff CF (2021) From nature to organic (bio) electronics: a review on a melanin-inspired material. J Mater Chem C 9:14514–14531. https://doi.org/10.1039/D1TC03029A

    Article  CAS  Google Scholar 

  21. Reali M, Camus A, Beaulieu G, De Angelis J, Pellerin C, Pezzella A, Santato C (2021) Eumelanin: From Molecular State to Film. J Phys Chem C 125(6):3567–3576. https://doi.org/10.1021/acs.jpcc.0c10063

    Article  CAS  Google Scholar 

  22. Yao Z, Qi J, Wang L (2012) Isolation, fractionation and characterization of melanin-like pigments from chestnut (Castanea mollissima) shells. J Food Sci 77(6):C671–C676. https://doi.org/10.1111/j.1750-3841.2012.02714.x

    Article  CAS  PubMed  Google Scholar 

  23. Ito S, Wakamatsu K, Ozeki H (2000) Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res 13:103–109. https://doi.org/10.1034/j.1600-0749.13.s8.19.x

    Article  PubMed  Google Scholar 

  24. Bayram S (2021) Production, purification, and characterization of Streptomyces sp. strain MPPS2 extracellular pyomelanin pigment. Arch Microbiol 203:4419–4426. https://doi.org/10.1007/s00203-021-02437-w

    Article  CAS  PubMed  Google Scholar 

  25. Geib E, Gressler M, Viediernikova I, Hillmann F, Jacobsen ID, Nietzsche S, Hertweck C, Brock M (2016) A non-canonical melanin biosynthesis pathway protects Aspergillus terreus conidia from environmental stress. Cell Chem Biol 23(5):587–597. https://doi.org/10.1016/j.chembiol.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  26. Gonçalves RCR, Lisboa HCF, Pombeiro-Sponchiado SR (2012) Characterization of melanin pigment produced by Aspergillus nidulans. World J Microbiol Biotechnol 28(4):1467–1474. https://doi.org/10.1007/s11274-011-0948-3

    Article  CAS  PubMed  Google Scholar 

  27. Sava VM, Galkin BN, Hong MY, Yang PC, Huang GS (2001) A novel melanin-like pigment derived from black tea leaves with immuno-stimulating activity. Food Res Int 34(4):337–343. https://doi.org/10.1016/S0963-9969(00)00173-3

    Article  CAS  Google Scholar 

  28. Sezen S, Güllüce M, Karadayi M, Alaylar B (2020) First report of fungal strains from Afşin–Elbistan mine for microbial lignite process. Geomicrobiol J 37(2):143–146. https://doi.org/10.1080/01490451.2019.1668511

    Article  CAS  Google Scholar 

  29. Li Q, Liao G, Tian J, Xu Z (2018) Preparation of Novel Fluorinated Copolyimide/Amine-Functionalized Sepia Eumelanin Nanocomposites with Enhanced Mechanical, Thermal, and UV‐Shielding Properties. Macromol Mater Eng 303(2):1700407. https://doi.org/10.1002/mame.201700407

    Article  CAS  Google Scholar 

  30. Ghadge V, Kumar P, Singh S, Mathew DE, Bhattacharya S, Nimse SB, Shinde PB (2020) Natural melanin produced by the endophytic Bacillus subtilis 4NP-BL Associated with the Halophyte Salicornia brachiata. J Agric Food Chem 68(25):6854–6863. https://doi.org/10.1021/acs.jafc.0c01997

    Article  CAS  PubMed  Google Scholar 

  31. Suwannarach N, Kumla J, Watanabe B, Matsui K, Lumyong S (2019) Characterization of melanin and optimal conditions for pigment production by an endophytic fungus, Spissiomyces endophytica SDBR-CMU319. PLoS ONE 14(9):e0222187. https://doi.org/10.1371/journal.pone.0222187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Müjdeci GN (2021) Natural Melanin Synthesized by Aureobasidium pullulans Using Food Wastes and its Characterization. Appl Food Biotechnol 8(4):307–318. https://doi.org/10.22037/afb.v8i4.34599

    Article  CAS  Google Scholar 

  33. Madkhali N, Alqahtani HR, Alterary S, Albrithen HA, Laref A, Hassib A (2020) Characterization and electrochemical deposition of natural melanin thin films. Arab J Chem 13(4):4987–4993. https://doi.org/10.1016/j.arabjc.2020.01.021

    Article  CAS  Google Scholar 

  34. Tarangini K, Mishra S (2014) Production of melanin by soil microbial isolate on fruit waste extract: two step optimization of key parameters. Biotechnol Rep 4(2014):139–146. https://doi.org/10.1016/j.btre.2014.10.001

  35. Mekala LP, Mohammed M, Chinthalapati S, Chinthalapati VR (2019) Pyomelanin production: Insights into the incomplete aerobic l-phenylalanine catabolism of a photosynthetic bacterium, Rubrivivax benzoatilyticus JA2. Int J Biol Macromol 126:755–764. https://doi.org/10.1016/j.ijbiomac.2018.12.142

    Article  CAS  PubMed  Google Scholar 

  36. Aime S, Fasano M, Terreno E, Groombridge CJ (1991) NMR studies of melanins: characterization of a soluble melanin free acid from Sepia ink. Pigment Cell Res 4(5–6):216–221. https://doi.org/10.1111/j.1600-0749.1991.tb00443.x

    Article  CAS  PubMed  Google Scholar 

  37. Hou R, Liu X, Yan J, Xiang K, Wu X, Lin W, Fu J (2019) Characterization of natural melanin from Auricularia auricula and its hepatoprotective effect on acute alcohol liver injury in mice. Food Funct 10(2):1017–1027. https://doi.org/10.1039/C8FO01624K

    Article  CAS  PubMed  Google Scholar 

  38. Xin C, Ma JH, Tan CJ, Yang Z, Ye F, Long C, Ye S, Hou DB (2015) Preparation of melanin from Catharsius molossus L. and preliminary study on its chemical structure. J Biosci Bioeng 119(4):446–454. https://doi.org/10.1016/j.jbiosc.2014.09.009

    Article  CAS  PubMed  Google Scholar 

  39. De Souza RA, Kamat NM, Nadkarni VS (2018) Purification and characterisation of a sulphur rich melanin from edible mushroom Termitomyces albuminosus Heim. Mycology 9(4):296–306. https://doi.org/10.1080/21501203.2018.1494060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. El-Sayyad GS, Mosallam FM, El-Batal AI (2018) One-pot green synthesis of magnesium oxide nanoparticles using Penicillium chrysogenum melanin pigment and gamma rays with antimicrobial activity against multidrug-resistant microbes. Adv Powder Technol 29(11):2616–2625. https://doi.org/10.1016/j.apt.2018.07.009

    Article  CAS  Google Scholar 

  41. Sun S, Zhang X, Sun S, Zhang L, Shan S, Zhu H (2016) Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chem 190:801–807. https://doi.org/10.1016/j.foodchem.2015.06.042

    Article  CAS  PubMed  Google Scholar 

  42. Al Khatib M, Harir M, Costa J, Baratto MC, Schiavo I, Trabalzini L, Pogni R (2018) Spectroscopic characterization of natural melanin from a Streptomyces cyaneofuscatus strain and comparison with melanin enzymatically synthesized by tyrosinase and laccase. Molecules 23(8):1916. https://doi.org/10.3390/molecules23081916

    Article  CAS  PubMed Central  Google Scholar 

  43. Clancy CM, Simon JD (2001) Ultrastructural organization of eumelanin from Sepia officinalis measured by atomic force microscopy. Biochem 40(44):13353–13360. https://doi.org/10.1021/bi010786t

    Article  CAS  Google Scholar 

  44. Bloisi F, Pezzella A, Barra M, Alfè M, Chiarella F, Cassinese A, Vicari L (2011) Effect of substrate temperature on MAPLE deposition of synthetic eumelanin films. Appl Phys A 105(3):619–627. https://doi.org/10.1007/s00339-011-6603-x

    Article  CAS  Google Scholar 

  45. Srisuk P, Correlo VM, Leonor IB, Palladino P, Reis RL (2015) Effect of melanomal proteins on sepia melanin assembly. J Macromol Sci B 54(12):1532–1540. https://doi.org/10.1080/00222348.2015.1103430

    Article  CAS  Google Scholar 

  46. De Trizio A, Srisuk P, Costa RR, Fraga AG, Modena T, Genta I, Dorati R, Pedrosa J, Conti B, Corello VM, Reis RL (2017) Natural based eumelanin nanoparticles functionalization and preliminary evaluation as carrier for gentamicin. React Funct Polym 114:38–48. https://doi.org/10.1016/j.reactfunctpolym.2017.03.004

    Article  CAS  Google Scholar 

  47. Xu R, Santato C, Soavi F (2019) An Electrochemical Study on the Effect of Metal Chelation and Reactive Oxygen Species on a Synthetic Neuromelanin Model. Front Bioeng Biotechnol 7:227. https://doi.org/10.3389/fbioe.2019.00227

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

XRD and FT-IR analysis results were obtained from the Bayburt University Central Research Laboratory (BUMER) and NMR analysis reults were obtained from Science Application and Research Center (VAN-MERLAB) in Van Yüzüncü Yıl University. SEM and AFM micrographs were obtained from Center of East Anatolian High-Technology Research and Application (DAYTAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan BAYRAM.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Human or Animals Participants

This study does not contain any studies with human participants or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BAYRAM, S. A comparative characterization study between fungal and bacterial eumelanin pigments. Indian J Microbiol 62, 393–400 (2022). https://doi.org/10.1007/s12088-022-01012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-022-01012-1

Keywords

Navigation