Skip to main content

Advertisement

Log in

A Microcosm Model for the Study of Microbial Community Shift and Carbon Emission from Landfills

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The landfill is an inexpensive way of municipal solid waste (MSW) management and contributes extensively to the total carbon budget and global climate change. Three landfills from two geographically distinct metro- cities of India were taken as model systems to create microcosms and study their physiochemistry, microbiology, and carbon emission. The microcosm experiments revealed that facultative anaerobic bacterial community showing the dominance in the beginning but with the progression of anoxia and anaerobic conditions, methanogenesis prevailed, resulting in a clear shift towards the abundance of methanogens especially the members of Methanosarcina, Methanocorpusculum, and Methanoculleus (70–90% of the total microbial population). Geochemical data showed a wide range of heterogeneity in landfills’ composition located even in the same city. In past, greenhouse gas emission from landfills is mainly estimated using different models which lack accuracy. As limited information is available as of now, this study can elicit researcher interest for in-depth characterization of microbial diversity and carbon emission from landfills. The microcosm model presented in the current study is a robust and straightforward method of accurate estimation of amounts of different types of gases release from landfill. It can also be extrapolate for estimation of different gases release from actual landfill sites by setting the on-site experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Swati, Thakur IS, Vijay VK et al (2018) Scenario of Landfilling in India: Problems, Challenges, and Recommendations. In: In: Hussain C (ed) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_167-1

    Chapter  Google Scholar 

  2. Meyer-Dombard DR, Bogner JE, Malas J (2020) A Review of Landfill Microbiology and Ecology: A Call for Modernization With ‘Next Generation’ Technology. Front Microbiol 11:1127. doi: https://doi.org/10.3389/fmicb.2020.01127

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rawat M, Singh UK, Mishra AK et al (2008) Methane emission and heavy metals quantification from selected landfill areas in India. Environ Monit Assess 137:67–74. doi: https://doi.org/10.1007/s10661-007-9729-8

    Article  CAS  PubMed  Google Scholar 

  4. Gollapalli M, Kota SH (2018) Methane emissions from a landfill in north-east India: Performance of various landfill gas emission models. Environ Pollut 234:174–180. doi: https://doi.org/10.1016/j.envpol.2017.11.064

    Article  CAS  PubMed  Google Scholar 

  5. Yadav S, Kundu S, Ghosh SK et al (2015) Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences. Archaea. https://doi.org/10.1155/2015/563414

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sekhohola-Dlamini L, Tekere M (2020) Microbiology of municipal solid waste landfills: a review of microbial dynamics and ecological influences in waste bioprocessing. Biodegradation 31:1–21. doi: https://doi.org/10.1007/s10532-019-09890-x

    Article  CAS  PubMed  Google Scholar 

  7. Sekhohola-Dlamini L, Selvarajan R, Ogola HJO et al (2021) Community diversity metrics, interactions, and metabolic functions of bacteria associated with municipal solid waste landfills at different maturation stages. Microbiologyopen 10:e1118. doi: https://doi.org/10.1002/mbo3.1118

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Cao A, Zhao G et al (2017) Microbial community structure and diversity in a municipal solid waste landfill. Waste Manag 66:79–87. doi: https://doi.org/10.1016/j.wasman.2017.04.023

    Article  PubMed  Google Scholar 

  9. Zhao R, Liu J, Feng J, Li X et al (2021) Microbial community composition and metabolic functions in landfill leachate from different landfills of China. Sci Total Environ 767:144861. doi: https://doi.org/10.1016/j.scitotenv.2020.144861

    Article  CAS  PubMed  Google Scholar 

  10. Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N (2021) Bacterial Diversity and Community Structure of a Municipal Solid Waste Landfill: A Source of Lignocellulolytic Potential. Life (Basel). 11:493. https://doi.org/10.3390/life11060493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar A, Sharma MP (2014) Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sustain Energy Technol Assess 5:50–61. https://doi.org/10.1016/j.seta.2013.11.004

    Article  Google Scholar 

  12. Patel SKS, Kalia VC, Joo JB et al (2020) Biotransformation of methane into methanol by methanotrophs immobilized on coconut coir. Bioresour Technol 297:122433. https://doi.org/10.1016/j.biortech.2019.122433

    Article  CAS  PubMed  Google Scholar 

  13. Patel SKS, Gupta RK, Kumar V et al (2020) Biomethanol production from methane by immobilized cocultures of methanotrophs. Indian J Microbiol 60:318–324. https://doi.org/10.1007/s12088-020-00883-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel SKS, Jeon MS, Gupta RK et al (2019) Hierarchical macro-porous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977. https://doi.org/10.1021/acsami.9b03420

    Article  CAS  PubMed  Google Scholar 

  15. Patel SKS, Selvaraj C, Mardina P et al (2016) Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl Energy 171:383–391. https://doi.org/10. 1016/j.apenergy.2016.03.022

    Article  CAS  Google Scholar 

  16. Kondaveeti S, Patel SKS, Pagolu R et al (2019) Conversion of simulated biogas to electricity: sequential operation of methanotrophic reactor effluents in microbial fuel cell. Energy 189:116309. https://doi.org/10.1016/j.energy.2019.116309

    Article  CAS  Google Scholar 

  17. Patel SKS, Gupta RK, Kondaveeti S et al (2020) Conversion of biogas to methanol by methanotrophs immobilized on chemically modified chitosan. Bioresour Technol 315:123791. https://doi.org/10.1016/j.biortech.2020.123791

    Article  CAS  PubMed  Google Scholar 

  18. Patel SKS, Ray S, Prakash J et al (2019) Co-digestion of biowastes to enhance biological hydrogen process by defined mixed bacterial cultures. Indian J Microbiol 59:154–160. https://doi.org/10.1007/s12088-018-00777-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Patel SKS, Gupta RK, Das D et al (2021) Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J Clean Prod 287:125037. https://doi.org/10.1016/j.jclepro.2020.125037

    Article  CAS  Google Scholar 

  20. Patel SKS, Kondaveeti S, Otari SV et al (2018) Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila. Energy 145:477–485. https://doi.org/10.1016/j.energy.2017.12.142

    Article  CAS  Google Scholar 

  21. Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108:4516–4522. doi: https://doi.org/10.1073/pnas.1000080107

    Article  PubMed  Google Scholar 

  22. Jani K, Dhotre D, Bandal J et al (2018) World’s Largest Mass Bathing Event Influences the Bacterial Communities of Godavari, a Holy River of India. Microb Ecol 76:706–718. doi: https://doi.org/10.1007/s00248-018-1169-1

    Article  PubMed  Google Scholar 

  23. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi: https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McMurdie PJ, Holmes S (2013) phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. Watson M, editor. PLoS ONE. Apr 22:e61217. doi: https://doi.org/10.1371/journal.pone.0061217

  25. Evans MV, Panescu J, Hanson AJ et al (2018) Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin. Front Microbiol 9:2646. doi: https://doi.org/10.3389/fmicb.2018.02646

    Article  PubMed  PubMed Central  Google Scholar 

  26. Song L, Wang Y, Zhao H et al (2015) Composition of bacterial and archaeal communities during landfill refuse decomposition processes. Microbiol Res 181:105–111. doi: https://doi.org/10.1016/j.micres.2015.04.009

    Article  PubMed  Google Scholar 

  27. Tan W-B, Jiang Z, Chen C et al (2015) Thiopseudomonas denitrificans gen. nov., sp. nov., isolated from anaerobic activated sludge. Int J Syst Evol Microbiol Jan 65:225–229. doi: https://doi.org/10.1016/j.micres.2015.04.009

    Article  CAS  Google Scholar 

  28. Hahnke S, Langer T, Koeck DE et al (2016) Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. Int J Syst Evol Microbiol 66:1466–1475. doi: https://doi.org/10.1099/ijsem.0.000902

    Article  CAS  PubMed  Google Scholar 

  29. Oosterkamp MJ, Bauer S, Ibáñez AB et al (2019) Identification of methanogenesis and syntrophy as important microbial metabolic processes for optimal thermophilic anaerobic digestion of energy cane thin stillage. Bioresour Technol Rep 7:100254. https://doi.org/10.1016/j.biteb.2019.100254

    Article  Google Scholar 

  30. Jia M-S, Wang X-J, Chen S-H (2014) [Nitrous oxide emissions from municipal solid waste landfills and its measuring methodology: a review]. Ying Yong Sheng Tai Xue Bao J Appl Ecol 25:1815–1824

    CAS  Google Scholar 

  31. Ishigaki T, Nakagawa M, Nagamori M et al (2016) Anaerobic generation and emission of nitrous oxide in waste landfills. Environ Earth Sci 75:750. https://doi.org/10.1007/s12665-016-5543-3

    Article  CAS  Google Scholar 

  32. Zhang C, Xu T, Feng H et al (2019) Greenhouse Gas Emissions from Landfills: A Review and Bibliometric Analysis. Sustainability 8:2282. https://doi.org/10.3390/su11082282

    Article  Google Scholar 

  33. Conthe M, Parchen C, Stouten G et al (2018) O2 versus N2O respiration in a continuous microbial enrichment. Appl Microbiol Biotechnol 102:8943–8950. https://doi.org/10.1007/s00253-018-9247-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen J, Strous M (2013) Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim Biophys Acta BBA-Bioenerg 1827:136–144. https://doi.org/10.1016/j.bbabio.2012.10.002

    Article  CAS  Google Scholar 

  35. Shrivastava A, Ghosh D, Dash A et al (2015) Arsenic Contamination in Soil and Sediment in India: Sources, Effects, and Remediation. Curr Pollut Rep 1:35–46. https://doi.org/10.1007/s40726-015-0004-2

    Article  CAS  Google Scholar 

  36. Naveen BP, Mahapatra DM, Sitharam TG et al (2017) Physico-chemical and biological characterization of urban municipal landfill leachate. Environ Pollut 220:1–12. https://doi.org/10.1016/j.envpol.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  37. Yadava S, Maitra SS (2017) Molecular detection of methylotrophs from an Indian landfill site and their potential for biofuel production. Glob Nest J 19:533–539. https://doi.org/10.30955/gnj.002380

    Article  CAS  Google Scholar 

  38. Patel SKS, Gupta RK, Kalia VC et al (2021) Integrating anaerobic digestion of potato peels to methanol production by methanotrophs immobilized on banana leaves. Bioresour Technol 323:124550. https://doi.org/10.1016/j.biortech.2020.124550

    Article  CAS  PubMed  Google Scholar 

  39. Patel SKS, Kumar V, Mardina P et al (2018) Methanol peoduction from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. Bioresour Technol 263:25–32. https://doi.org/10.1016/j.biortech.2018.04.096

    Article  CAS  PubMed  Google Scholar 

  40. Patel SKS, Shanmugam R, Kalia VC et al (2020) Methanol production by polymer-encapsulated methanotrophs from simulated biogas in the presence of methane vector. Bioresour Technol 304:123022. https://doi.org/10.1016/j.biortech.2020.123022

    Article  CAS  PubMed  Google Scholar 

  41. Patel SKS, Das D, Kim SC et al (2021) Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew Sust Energ Rev 150:111491. https://doi.org/10.1016/j.rser.2021.111491

    Article  CAS  Google Scholar 

  42. Patel SKS, Kumar P, Singh S et al (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. https://doi.org/10.1016/j.biortech.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  43. Patel SKS, Mardina P, Kim D et al (2016) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208. https://doi.org/10.1016/j.biortech.2016.06.065

    Article  CAS  PubMed  Google Scholar 

  44. Porwal S, Kumar T, Lal S et al (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. https://doi.org/10.1016/j.biortech.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  45. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy 35:10674–10681. https://doi.org/10.1016/j.ijhydene.201003.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research is carried out as a part of the sanctioned project (BT/13969/BCE/8/1142/2015) at the National Centre for Microbial Resource, National Centre for Cell Science under the funds granted by the Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

OP, DD, YS, and DR, conceived and designed the experiments. IS and YN performed the experiments, collected and analyzed the data. IS and OP wrote the article, and SD and OP revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Om Prakash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, I., Nimonkar, Y., Dhotre, D. et al. A Microcosm Model for the Study of Microbial Community Shift and Carbon Emission from Landfills. Indian J Microbiol 62, 195–203 (2022). https://doi.org/10.1007/s12088-021-00995-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00995-7

Keywords

Navigation