Skip to main content
Log in

A comprehensive survey on communication techniques for the realization of intelligent transportation systems in IoT based smart cities

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Traffic has been on the rise since the past decade that pose threats to driving safety and traffic efficiency. Intelligent Transportation System (ITS) evolved as an alternative solution to ensure traffic efficiency, safety and provides comfort to the commuters on roads. In traditional transportation systems, there exist problems related to safety, traffic management, congestion, routing, road infrastructure management, emergency response, communication, and security which can be solved by ITS. From the existing literature, it is evident that several classes of applications pertaining to safety, surveillance, traffic management, weather/pollution monitoring, disaster management in ITS will create an incredible experience to the commuters and the drivers. ITS engulfs applications pertaining to monitor road surfaces incisively and to recognize risks to alleviate unsafe environments and perilous accidents by means of wireless communications. This provides a motivation in this paper to review distinct types of various research works pertaining to applications of Intelligent Transportation Systems which address the problem of traffic congestion, safety and efficiency in modern ITS. Various applications, communication techniques and security are summarized, analyzed and compared with the existing works using various performance metrics. Moreover, an in-depth survey is carried out to provide insights to bridge the gaps and directions for future researchers. Further, in this paper, the case studies related to ITS have been discussed to identify how the paradigm shift will take us to the design of the future transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Wan S, Gu Z, Ni Q (2020) Cognitive computing and wireless communications on the edge for healthcare service robots. Comput Commun 149:99–106

    Article  Google Scholar 

  2. Chen M, Leung VC, Mao S, Yuan Y (2007) Directional geographical routing for real-time video communications in wireless sensor networks. Comput Commun 30(17):3368–3383

    Article  Google Scholar 

  3. Figueiredo L, Jesus I, Machado JAT, Ferreira JR, Martins de Carvalho JL (2001) Towards the development of intelligent transportation systems, ITSC 2001. In: 2001 IEEE intelligent transportation systems. Proceedings (Cat. No.01TH8585). Oakland, pp 1206–1211. https://doi.org/10.1109/ITSC.2001.948835

  4. Alberio M, Parldori G (2017) Innovation in automotive: A challenge for 5G and beyond network. In Proceedings of the international conference of electrical and electronic technologies for automotive, Torino, Italy, p 1–6. https://doi.org/10.23919/EETA.2017.7993223

  5. Schaefer KE, Straub ER (2016) Will passengers trust driverless vehicles? Removing the steering wheel and pedals. In: Proceedings of the IEEE international multi-disciplinary conference on cognitive methods in situation awareness and decision support (CogSIMA), San Diego, CA, p 159–165. https://doi.org/10.1109/COGSIMA.2016.7497804

  6. Jones L (2017) Driverless when and cars: Where? [Automotive Autonomous vehicles]. Eng Technol 12(2):36–40. https://doi.org/10.1049/et.2017.0201

    Article  Google Scholar 

  7. Hussain R, Zeadally S (2019) Autonomous cars: Research results, issues and future challenges. IEEE Commun Surv Tutor 21(2):1275–1313. https://doi.org/10.1109/COMST.2018.2869360

    Article  Google Scholar 

  8. (2021) IEEE standard for information technology--telecommunications and information exchange between systems - local and metropolitan area networks--specific requirements - Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In: IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016), pp 1–4379. https://doi.org/10.1109/IEEESTD.2021.9363693

  9. (2019) IEEE guide for wireless access in vehicular environments (WAVE) architecture. In: IEEE Std 1609.0-2019 (Revision of IEEE Std 1609.0-2013), pp 1–106. https://doi.org/10.1109/IEEESTD.2019.8686445

  10. (2016) IEEE standard for wireless access in vehicular environments--security services for applications and management messages. In: IEEE Std 1609.2-2016 (Revision of IEEE Std 1609.2-2013), pp 1–240. https://doi.org/10.1109/IEEESTD.2016.7426684

    Book  Google Scholar 

  11. (2016) IEEE standard for wireless access in vehicular environments (WAVE) -- multi-channel operation. In: IEEE Std 1609.4-2016 (Revision of IEEE Std 1609.4-2010), pp 1–94. https://doi.org/10.1109/IEEESTD.2016.7435228

  12. (2016) IEEE standard for wireless access in vehicular environments (WAVE) -- multi-channel operation. In: IEEE Std 1609.4-2016 (Revision of IEEE Std 1609.4-2010), pp 1–94. https://doi.org/10.1109/IEEESTD.2016.7435228

  13. (2012) IEEE Standard for Information technology--Telecommunications and information exchange between systems Local and metropolitan area networks--specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In: IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pp 1–2793. https://doi.org/10.1109/IEEESTD.2012.6178212

  14. Fotouhi A et al (2014) A review on the applications of driving data and traffic information for vehicles׳ energy conservation. Renew Sust Energ Rev 37:822–833

    Article  Google Scholar 

  15. Guerrero-Ibáñez J, Zeadally S, Contreras-Castillo J (2018) Sensor technologies for intelligent transportation systems. Sensors (Basel) 18(4):1212. https://doi.org/10.3390/s18041212. PMID:29659524;PMCID:PMC5948625

    Article  ADS  PubMed  Google Scholar 

  16. Sirohi D, Kumar N (2020) Prashant Singh Rana, Convolutional neural networks for 5G-enabled Intelligent Transportation System : A systematic review. Comput Commun 153:459–498. https://doi.org/10.1016/j.comcom.2020.01.058. ISSN 0140-3664

    Article  Google Scholar 

  17. Al-Turjman F (2020) Joel Poncha Lemayian, Intelligence, security, and vehicular sensor networks in internet of things (IoT)-enabled smart-cities: An overview. Comput Electric Eng 87:106776. https://doi.org/10.1016/j.compeleceng.2020.106776. ISSN 0045-7906

    Article  Google Scholar 

  18. Jeong (Harrison) HH, Shen (Chris) YC, Jeong (Paul) JP, Oh (Tom) TT (2021) A comprehensive survey on vehicular networking for safe and efficient driving in smart transportation: A focus on systems, protocols, and applications. Veh Commun 31:100349. https://doi.org/10.1016/j.vehcom.2021.100349. ISSN 2214–2096

  19. World Health Organization (2010) World Health Statistics 2010 Indicator Compendium Interim Version. World Health Organization, Geneva, Switzerland

    Google Scholar 

  20. Mohamed HA (2015) Estimation of socio-economic cost of road accidents in Saudi Arabia: Willingness-To-Pay Approach (WTP). Adv Manag Appl Econ 5:43

    Google Scholar 

  21. Al Turki YA (2014) How can Saudi Arabia use the Decade of Action for Road Safety to catalyse road traffic injury prevention policy and interventions? Int J Inj Control Saf Promot 21:397–402

    Article  Google Scholar 

  22. Aldegheishem A, Yasmeen H, Maryam H, Shah MA, Mehmood A, Alrajeh N (2018) Song Smart road traffic accidents reduction strategy based on intelligent transportation systems (tars). Sensors 18(7):1983

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Wenger J (2005) Automotive radar - status and perspectives. In: IEEE compound semiconductor integrated circuit symposium, 2005. CSIC '05, Palm Springs, p 4. https://doi.org/10.1109/CSICS.2005.1531741

  24. https://simplicable.com/design/active-safety-vs-passive-safety

  25. Sommer C, Dressler F (2015) Vehicular Networking. Cambridge University Press, Cambridge, UK

    Google Scholar 

  26. de Souza AM, Brennand CA, Yokoyama RS, Donato EA, Madeira ER, Villas LA (2017) Traffic management systems: A classification, review, challenges, and future perspectives. Int J Distrib Sens Netw 13(4). https://doi.org/10.1177/1550147716683612

  27. Mohapatra H, Rath AK, Panda N (2022) IoT infrastructure for the accident avoidance: an approach of smart transportation. Int J Inf Technol 14:761–768. https://doi.org/10.1007/s41870-022-00872-6

    Article  Google Scholar 

  28. Almutairi MS, Almutairi K (2023) Chiroma H Hybrid of deep recurrent network and long short term memory for rear-end collision detection in fog based internet of vehicles. Expert Syst Appl 213(Part C):119033. https://doi.org/10.1016/j.eswa.2022.119033. ISSN 0957-4174

    Article  Google Scholar 

  29. Haider S, Abbas G, Abbas ZH, Boudjit S (2020) Halim Z P-DACCA: A probabilistic direction-aware cooperative collision avoidance scheme for VANETs. Future Gener Comput Syst 103:1–17

    Article  Google Scholar 

  30. Speiran J, Shakshuki EM (2022) A smartphone VANET based forward collision detection system. Procedia Comput Sci 198:33–42

    Article  Google Scholar 

  31. Gonçalves F et al (2022) Enhancing VRUs Safety with V2P communications: an experiment with hidden pedestrians on a crosswalk. In: 2022 14th international congress on ultra modern telecommunications and control systems and workshops (ICUMT), Valencia, pp 96–103. https://doi.org/10.1109/ICUMT57764.2022.9943508

  32. Venkatamune N, PrabhaShankar J (2023) A VANET collision warning system with cloud aided pliable Q-learning and safety message dissemination. Int Arab J Inf Technol 20(1):113–124

    Google Scholar 

  33. Dutta C, Singhal DN (2019) A hybridization of artificial neural network and support vector machine for prevention of road accidents in VANET. Int J Comput Eng Technol 10(01)

  34. Salunkhe A, Shinde S (2014) Proposed technique to improve VANET’s vehicle localization accuracy in multipath environment. Int J Eng Sci Res Technol (IJESRT) 3:103–105

    Google Scholar 

  35. Borisagar P, Agrawal Y, Parekh R (2018) Efficient vehicle accident detection system using Tensorflow and transfer learning. In: 2018 international conference on networking, embedded and wireless systems (ICNEWS), Bangalore, pp 1–6. https://doi.org/10.1109/ICNEWS.2018.8903938

  36. Ganesh A, Ayyasamy S (2022) Enhanced approach in VANETs for avoidance of collision with reinforcement learning strategy. In: Ibrahim R, Porkumaran K, Kannan R, Mohd Nor N, Prabakar S (eds) International conference on artificial intelligence for smart community, Lecture notes in electrical engineering, vol 758. Springer, Singapore. https://doi.org/10.1007/978-981-16-2183-3_41

    Chapter  Google Scholar 

  37. Alshudukhi JS, Al-Mekhlafi ZG, Mohammed BA (2021) A lightweight authentication with privacy-preserving scheme for vehicular ad hoc networks based on elliptic curve cryptography. IEEE Access 9:15633–15642

    Article  Google Scholar 

  38. Yang Y, Zhang L, Zhao Y, Choo KK (2022) Zhang Y Privacy-preserving aggregation-authentication scheme for safety warning system in fog-cloud based VANET. IEEE Trans Inf Forensics Secur 17:317–331

    Article  Google Scholar 

  39. Ning H, An Y, Wei Y, Naiqi W, Chen M, Cheng H, Zhu C (2023) Modeling and analysis of traffic warning message dissemination system in VANETs. Veh Commun 39:100566

    Google Scholar 

  40. Yang J, Deng J, Xiang T, Tang B (2021) A Chebyshev polynomial-based conditional privacy-preserving authentication and group-key agreement scheme for VANET. Nonlinear Dyn 106:2655–2666

    Article  Google Scholar 

  41. Guria M, Bhowmik B (2022) IoT-enabled driver drowsiness detection using machine learning. In: 2022 Seventh international conference on parallel, distributed and grid computing (PDGC), Solan, pp 519–524. https://doi.org/10.1109/PDGC56933.2022.10053235

  42. Ucar S, Hoh B, Oguchi K (2021) Differential Deviation Based Abnormal Driving Behavior Detection. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, p 1553–1558.https://doi.org/10.1109/ITSC48978.2021.9564620

  43. Hou M, Wang M, Zhao W, Ni Q, Cai Z, Kong X (2022) A lightweight framework for abnormal driving behavior detection. Comput Commun 184:128–136. https://doi.org/10.1016/j.comcom.2021.12.007. ISSN 0140-3664

    Article  Google Scholar 

  44. Omerustaoglu F, Sakar CO, Kar G (2020) Distracted driver detection by combining in-vehicle and image data using deep learning. Appl Soft Comput 96:106657. https://doi.org/10.1016/j.asoc.2020.106657. ISSN 1568-4946

    Article  Google Scholar 

  45. Shahverdy M, Fathy M, Berangi R, Sabokrou M (2020) Driver behavior detection and classification using deep convolutional neural networks. Expert Syst Appl 149:113240. https://doi.org/10.1016/j.eswa.2020.113240. ISSN 0957-4174

    Article  Google Scholar 

  46. Tauqeer M, Rubab S, Khan MA, Naqvi RA, Javed K, Alqahtani A, Alsubai S (2022) Binbusayyis Driver’s emotion and behavior classification system based on Internet of Things and deep learning for Advanced Driver Assistance System (ADAS). Comput Commun 194:258–267. https://doi.org/10.1016/j.comcom.2022.07.031. ISSN 0140-3664

    Article  Google Scholar 

  47. Guria M, Bhowmik B (2022) IoT-enabled driver drowsiness detection using machine learning. In: 2022 seventh international conference on parallel, distributed and grid computing (PDGC), Solan, pp 519-524. https://doi.org/10.1109/PDGC56933.2022.10053235

  48. Savaş BK, Becerikli Y (2020) Real time driver fatigue detection system based on multi-task ConNN. Ieee Access 8:12491–12498

    Article  Google Scholar 

  49. Deng W, Ruoxue Wu (2019) Real-time driver-drowsiness detection system using facial features. Ieee Access 7:118727–118738

    Article  Google Scholar 

  50. Wang H, Wang X, Han J, Xiang H, Li H, Zhang Y, Li S (2022) A recognition method of aggressive driving behavior based on ensemble learning. Sensors 22:644. https://doi.org/10.3390/s22020644

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Siems-Anderson AR, Walker CL, Wiener G, Mahoney WP III, Haupt SE (2019) An adaptive big data weather system for surface transportation. Transp Res Interdiscip Perspect 3:100071. https://doi.org/10.1016/j.trip.2019.100071. ISSN 2590-1982

    Article  Google Scholar 

  52. Yoneda K, Suganuma N, Yanase R (2019) Aldibaja M Automated driving recognition technologies for adverse weather conditions. IATSS Res 43(4):253–262. https://doi.org/10.1016/j.iatssr.2019.11.005. ISSN 0386-1112

    Article  Google Scholar 

  53. Cecilia JM, Timón I, Soto J, Santa J, Pereñíguez F, Muñoz A (2018) High-Throughput Infrastructure for Advanced ITS Services: A Case Study on Air Pollution Monitoring. IEEE Trans Intell Transp Syst 19(7):2246–2257. https://doi.org/10.1109/TITS.2018.2816741

    Article  Google Scholar 

  54. Balen J, Ljepic S, Lenac K, Mandzuka S (2020) Air quality monitoring device for vehicular ad hoc networks: EnvioDev. International Journal of Advanced Computer Science and Applications (IJACSA) 11(5). https://doi.org/10.14569/IJACSA.2020.0110572

  55. Tahir MN, Sukuvaara T, Katz M (2020) Vehicular networking: ITS-G5 vs 5G performance evaluation using road weather information. In: 2020 international conference on software, telecommunications and computer networks (SoftCOM), Split, pp 1–6. https://doi.org/10.23919/SoftCOM50211.2020.9238267

  56. Iancu B, Illyes I, Peculea A, Dadarlat V (2019) Pollution probes application: the impact of using PVDM messages in VANET infrastructures for environmental monitoring. In: 2019 IEEE 15th international conference on intelligent computer communication and processing (ICCP). Cluj-Napoca, pp 443–449. https://doi.org/10.1109/ICCP48234.2019.8959532

    Chapter  Google Scholar 

  57. Bansal K, Mittal K, Ahuja G, Singh A, Gill SS (2020) DeepBus: Machine learning based real time pothole detection system for smart transportation using IoT. Int Technol Lett 3(3):1–6. https://doi.org/10.1002/itl2.156

    Article  Google Scholar 

  58. Luo D, Lu J, Guo G (2020) Road anomaly detection through deep learning approaches. IEEE Access 8:117390–117404. https://doi.org/10.1109/ACCESS.2020.3004590

    Article  Google Scholar 

  59. Bibi R, Saeed Y, Zeb A, Ghazal TM, Rahman T, Said RA, Abbas S, Ahmad M, Khan MA (2021) Edge AI-based automated detection and classification of road anomalies in VANET using deep learning. Comput Intell Neurosci 2021:1–16

    Article  Google Scholar 

  60. Sawalakhe H, Prakash R (2018) Development of roads pothole detection system using image processing. In: Thalmann D, Subhashini N, Mohanaprasad K, Murugan M (eds) Intelligent embedded systems, Lecture notes in electrical engineering, vol 492. Springer, Singapore. https://doi.org/10.1007/978-981-10-8575-8_20

    Chapter  Google Scholar 

  61. Ganesh Babu R, Chellaswamy C, Surya Bhupal Rao M, Saravanan M, Kanchana E, Shalini J (2020) Deep learning based pothole detection and reporting system," In: 2020 7th international conference on smart structures and systems (ICSSS), Chennai, pp 1-6. https://doi.org/10.1109/ICSSS49621.2020.9202061

  62. Artail H, Khalifeh K, Yahfoufi M (2017) Avoiding car-pedestrian collisions using a VANET to cellular communication framework. In: 2017 13th international wireless communications and mobile computing conference (IWCMC), Valencia, pp 458–465. https://doi.org/10.1109/IWCMC.2017.7986329

  63. Gomalavalli R, Nishapriyadharsini V, Pavan G, Ramyasri G, Niranjan P, Naveen R, Prathyusha K (2022) Automatic Pothole Detection and Uploading Data to Cloud Servers. IOSR J Electron Commun Eng (IOSR-JECE) 17(2):57–65. ISSN: 2278-8735

    Google Scholar 

  64. Bustamante-Bello R, García-Barba A, Arce-Saenz LA, Curiel-Ramirez LA, Izquierdo-Reyes J, Ramirez-Mendoza RA (2022) Visualizing street pavement anomalies through fog computing v2i networks and machine learning. Sensors 22(2):456

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  65. Li X, Huo D, Goldberg DW, Chu T, Yin Z, Hammond T (2019) Embracing crowdsensing: An enhanced mobile sensing solution for road anomaly detection. ISPRS Int J Geo-Inf 8(9):412

    Article  Google Scholar 

  66. Siqueira Nepomuceno PI, Ullah K, Braghetto KR, Macêdo Batista D (2022) A pothole warning system using vehicular ad-hoc networks (VANETs). In: 2022 international conference on frontiers of information technology (FIT), Islamabad, pp 147–152. https://doi.org/10.1109/FIT57066.2022.00036

  67. Mamatha G, Sharan HS, Prathik R, Priya DS, Prajwal U (2020) Smart vehicular communication for road status analysis and vehicle trajectory prediction. In: 2020 third international conference on smart systems and inventive technology (ICSSIT), Tirunelveli, pp 1081–1087. https://doi.org/10.1109/ICSSIT48917.2020.9214252

  68. Xu Z, Liu Y, Yen NY, Mei L, Luo X, Wei X, Hu C (2020) Crowdsourcing based description of urban emergency events using social media big data. IEEE Trans Cloud Comput 8(2):387–397. https://doi.org/10.1109/TCC.2016.2517638

    Article  Google Scholar 

  69. Gillani M, Niaz HA, Ullah A, Farooq MU, Rehman S (2022) Traffic aware data gathering protocol for VANETs. IEEE Access 10:23438–23449. https://doi.org/10.1109/ACCESS.2022.3154780

    Article  Google Scholar 

  70. You J, Muhammad AS, He X et al (2022) PANDA: predicting road risks after natural disasters leveraging heterogeneous urban data. CCF Trans Pervasive Comp Interact 4:393–407. https://doi.org/10.1007/s42486-022-00095-5

    Article  Google Scholar 

  71. Padmapriya V, Ashok AK, Sujatha DN, Venugopal KR (2019) Road side unit assisted emergency vehicle transit approach for urban roads using VANET. In: 2019 IEEE international conference on electrical, computer and communication technologies (ICECCT), Coimbatore, pp 1–6. https://doi.org/10.1109/ICECCT.2019.8869527

  72. Khaliq KA, Chughtai O, Shahwani A, Qayyum A (2019) Pannek J An emergency response system: construction, validation, and experiments for disaster management in a vehicular environment. Sensors 19(5):1150

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  73. Das Gupta S, Choudhury S, Chaki R (2019) Disaster Management System Using Vehicular Ad Hoc Networks. In Chaki R, Cortesi A, Saeed K, Chaki N (eds) Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 883. Springer, Singapore. https://doi.org/10.1007/978-981-13-3702-4_6

  74. Liu J, Chen S, Gui G, Gacanin H, Sari H (2023) Adachi F Failure Detector Based on Vehicle Movement Prediction in Vehicular Ad-Hoc Networks. In: IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2023.3266106

  75. Senapati BR, Khilar PM (2021) Swain RR Composite fault diagnosis methodology for urban vehicular ad hoc network. Veh Commun 29:100337

    Google Scholar 

  76. Yu H, Liu R, Li Z, Ren Y, Jiang H (2021) An RSU deployment strategy based on traffic demand in vehicular ad hoc networks (VANETs). IEEE Internet Thing J 9(9):6496–6505

    Article  Google Scholar 

  77. Liu J, Ding F, Zhang D (2019) A hierarchical failure detector based on architecture in vanets. IEEE Access 7:152813–152820

    Article  Google Scholar 

  78. Sivaram P, Senthilkumar S (2016) An efficient on the run in-vehicle diagnostic and remote diagnostics support system in VANET. Middle East J Sci Res 24(11):3542–3553

    Google Scholar 

  79. Lopes A (2020) Araújo RE Active fault diagnosis method for vehicles in platoon formation. IEEE Trans Veh Technol 69(4):3590–3603

    Article  Google Scholar 

  80. Rawlley O, Gupta S (2023) Artificial intelligence-empowered vision-based self driver assistance system for internet of autonomous vehicles. Trans Emerg Telecommun Technol 34(2):e4683

    Article  Google Scholar 

  81. Fürst S (2010) Challenges in the design of automotive software. In: 2010 design, automation & test in Europe conference & exhibition (DATE 2010), vol 2010, Dresden, pp 256–258. https://doi.org/10.1109/DATE.2010.5457201

  82. Ashraf J, Bakhshi AD, Moustafa N, Khurshid H, Javed A, Beheshti A (2021) Novel deep learning-enabled LSTM Autoencoder Architecture for discovering anomalous events from intelligent transportation systems. IEEE Trans Intell Transp Syst 22(7):4507–4518. https://doi.org/10.1109/TITS.2020.3017882

    Article  Google Scholar 

  83. Yang Y, Zhang L, Zhao Y, Choo K-KR, Zhang Y (2022) Privacy-Preserving Aggregation-Authentication Scheme for Safety Warning System in Fog-Cloud Based VANET. IEEE Trans Inf Forensics Secur 17:317–331. https://doi.org/10.1109/TIFS.2022.3140657

    Article  Google Scholar 

  84. Chen Y, Chen J (2021) CPP-CLAS: Efficient and conditional privacy-preserving certificateless aggregate signature scheme for VANETs. IEEE Int Things J 9(12):10354–10365

    Article  Google Scholar 

  85. Lyamin N, Kleyko D, Delooz Q, Vinel A (2018) AI-based malicious network traffic detection in VANETs. IEEE Netw 32(6):15–21

    Article  Google Scholar 

  86. Tolba AMR (2018) Trust-based distributed authentication method for collision attack avoidance in VANETs. IEEE Access 6:62747–62755

    Article  Google Scholar 

  87. Chen R, Sun Y, Liang L, Cheng W (2021) Joint power allocation and placement scheme for UAV-assisted IoT with QoS guarantee. IEEE Trans Veh Technol 71(1):1066–1071

    Article  Google Scholar 

  88. Elbery A, Hassanein HS, Zorba N, Rakha HA (2019) VANET-Based Smart Navigation for Vehicle Crowds: FIFA World Cup 2022 Case Study. In: 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, p 1–6. https://doi.org/10.1109/GLOBECOM38437.2019.9014183

  89. Shepelev V, Zhankaziev S, Aliukov S, Varkentin V, Marusin A, Marusin A, Gritsenko A (2022) forecasting the passage time of the queue of highly automated vehicles based on neural networks in the services of cooperative intelligent transport systems. Mathematics 10:282. https://doi.org/10.3390/math10020282

    Article  Google Scholar 

  90. Abdoos M, Vajedsamiei T (2021) Short-Term Traffic Flow Prediction Based on a Recurrent Deep Neural Network: a Study in Tehran. In: 2021 12th International Conference on Information and Knowledge Technology (IKT), Babol, Iran, Islamic Republic of, p 150–156. https://doi.org/10.1109/IKT54664.2021.9685122

  91. Bartlett Z, Han L, Nguyen TT, Johnson P (2019) Prediction of Road Traffic Flow Based on Deep Recurrent Neural Networks. In: 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 2019, p 102–109. https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00060

  92. Sadeghi-Niaraki A, Mirshafiei P, Shakeri M, Choi S-M (2020) Short-Term Traffic Flow Prediction Using the Modified Elman Recurrent Neural Network Optimized Through a Genetic Algorithm. IEEE Access 8:217526–217540. https://doi.org/10.1109/ACCESS.2020.3039410

    Article  Google Scholar 

  93. Hu H-X, Lin Z-Z, Hu Q, Zhang Y, Wei W, Wang W (2023) Multi-source Information Fusion based DLaaS for Traffic Flow Prediction. In: IEEE Transactions on Computers. https://doi.org/10.1109/TC.2023.3236902

  94. Gokula Krishnan V, Sankar Ram N (2018) Analyze traffic forecast for decentralized multi agent system using I-ACO routing algorithm. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-018-0981-2

    Article  Google Scholar 

  95. Baharani M, Katariya V, Morris N, Shoghli O, Tabkhi H (2022) DeepTrack: Lightweight Deep Learning for Vehicle Path Prediction in Highways. IEEE Transactions on Intelligent Transportation Systems, p 1–10, ISSN: 1558–0016. https://doi.org/10.1109/tits.2022.3172015

  96. Yuan T, Alasiri F, Ioannou PA (2022) Selection of the Speed Command Distance for Improved Performance of a Rule-Based VSL and Lane Change Control. In: IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2022.3157516

  97. Zhao H, Yu H, Li D, Mao T, Zhu H (2019) Vehicle Accident Risk Prediction Based on AdaBoost-SO in VANETs. IEEE Access 7:14549–14557. https://doi.org/10.1109/ACCESS.2019.2894176

    Article  Google Scholar 

  98. Li H, Ou D, Rasheed I, Tu M (2022) A Software-Defined Networking Roadside Unit Cloud Resource Management Framework for Vehicle Ad Hoc Networks‖, Hindawi. J Adv Transp Volume 2022, Article ID 5918128, 13 pages. https://doi.org/10.1155/2022/5918128

  99. Beenish H, Javid T, Fahad M, Siddiqui AA, Ahmed G, Syed HJ (2023) A novel Markov Model-based traffic density estimation technique for intelligent transportation system. Sensors 23:768. https://doi.org/10.3390/s23020768

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  100. Winzer OM, Conti-Kufner AS, Bengler K (2018) Intersection traffic light assistant – an evaluation of the suitability of two human machine interfaces. In: 2018 21st international conference on intelligent transportation Systems (ITSC). Maui, pp 261–265. https://doi.org/10.1109/ITSC.2018.8569708

  101. Manimurugan S (2023) Almutairi S (2023) Non-divergent traffic management scheme using classification learning for smart transportation systems. Comput Electr Eng 106:108581. https://doi.org/10.1016/j.compeleceng.2023.108581

    Article  Google Scholar 

  102. Naskath J, Paramasivan B, Mustafa Z et al (2022) Connectivity analysis of V2V communication with discretionary lane changing approach. J Supercomput 78:5526–5546. https://doi.org/10.1007/s11227-021-04086-8

    Article  Google Scholar 

  103. Naskath J, Paramasivan B (2021) Aldabbas H A study on modeling vehicles mobility with MLC for enhancing vehicle-to-vehicle connectivity in VANET. J Ambient Intell Humaniz Comput 12:8255–8264

    Article  Google Scholar 

  104. Miglani A, Kumar N (2019) Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and challenges. Veh Commun 20:100184

    Google Scholar 

  105. Kumar N, Chilamkurti N, Rodrigues JJ (2014) Learning automata-based opportunistic data aggregation and forwarding scheme for alert generation in vehicular ad hoc networks. Comput Commun 39:22–32

    Article  Google Scholar 

  106. Saini S, Nikhil S, Konda KR, Bharadwaj HS, Ganeshan N (2017) An efficient vision-based traffic light detection and state recognition for autonomous vehicles. In: 2017 IEEE intelligent vehicles symposium (IV), vol 2017, Los Angeles, pp 606–611. https://doi.org/10.1109/IVS.2017.7995785

  107. Dasanayaka N, Feng Y (2022) Analysis of Vehicle Location Prediction Errors for Safety Applications in Cooperative-Intelligent Transportation Systems. In: IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2022.3141710

  108. Regragui Y (2023) Moussa N A real-time path planning for reducing vehicles traveling time in cooperative-intelligent transportation systems. Simul Model Pract Theory 123:102710. https://doi.org/10.1016/j.simpat.2022.102710. ISSN 1569-190X

    Article  Google Scholar 

  109. Sudha D, Priyadarshini J (2020) An intelligent multiple vehicle detection and tracking using modified vibe algorithm and deep learning algorithm. Soft Comput 24:17417–17429. https://doi.org/10.1007/s00500-020-05042-z

    Article  Google Scholar 

  110. Tasgaonkar PP, Garg RD, Garg PK (2020) vehicle detection and traffic estimation with sensors technologies for intelligent transportation systems. Sens Imaging 21:29. https://doi.org/10.1007/s11220-020-00295-2

    Article  ADS  Google Scholar 

  111. Kumari JJ, Thangam S, Raja AS (2023) An optimal navigation model for realistic traffic network scenarios in VANET

  112. Hadiwardoyo SA, Patra S, Calafate CT et al (2018) An Intelligent transportation system application for smartphones based on vehicle position advertising and route sharing in vehicular Ad-Hoc Networks. J Comput Sci Technol 33:249–262. https://doi.org/10.1007/s11390-018-1817-4

    Article  Google Scholar 

  113. Teng H, Liu Y, Liu A, Xiong NN, Cai Z, Wang T (2019) Liu X A novel code data dissemination scheme for Internet of Things through mobile vehicle of smart cities. Future Gener Comput Syst 94:351–367. https://doi.org/10.1016/j.future.2018.11.039

    Article  Google Scholar 

  114. Al-Qurabat M, Kadhum A (2021) A lightweight Huffman-based differential encoding lossless compression technique in IoT for smart agriculture. Int J Comput Digit Syst

  115. Al-Qurabat AKM, Mohammed ZA, Hussein ZJ (2021) Data traffic management based on compression and MDL techniques for smart agriculture in IoT. Wirel Pers Commun 120(3):2227–2258

    Article  Google Scholar 

  116. Saeedi IDI, Al-Qurabat AKM (2022) An energy-saving data aggregation method for wireless sensor networks based on the extraction of extrema points. In: AIP conference proceedings, vol 2398, no 1. AIP Publishing

    Google Scholar 

  117. Abdulzahra SA, Al-Qurabat AKM, Idrees AK (2021) Compression-based data reduction technique for IoT sensor networks. Baghdad Sci J 18(1):184–198

    Article  Google Scholar 

  118. Al-Qurabat AKM, Salman HM, Finjan AAR (2022) Important extrema points extraction-based data aggregation approach for elongating the WSN lifetime. Int J Comput Appl Technol 68(4):357–368

    Article  Google Scholar 

  119. Saeedi IDI, Al-Qurabat AKM (2022) Perceptually important points-based data aggregation method for wireless sensor networks. Baghdad Sci J 19(4):0875–0875

    Article  Google Scholar 

  120. Saleem MA, Shijie Z, Sharif A (2019) Data transmission using IoT in vehicular ad-hoc networks in smart city congestion. Mob Netw Appl 24:248–258

    Article  Google Scholar 

  121. Nedham WB, Al-Qurabat AKM (2022) An improved energy efficient clustering protocol for wireless sensor networks. International Conference for Natural and Applied Sciences (ICNAS) 2022:23–28. https://doi.org/10.1109/ICNAS55512.2022.9944716

    Article  Google Scholar 

  122. Mukherjee A, Jain DK, Goswami P, Xin Q, Yang L, Rodrigues JJPC (2020) Back Propagation Neural Network Based Cluster Head Identification in MIMO Sensor Networks for Intelligent Transportation Systems. IEEE Access 8:28524–28532. https://doi.org/10.1109/ACCESS.2020.2971969

    Article  Google Scholar 

  123. Abdulzahra AM, Al-Qurabat AK, Abdulzahra SA (2023) Optimizing energy consumption in WSN-based IoT using unequal clustering and sleep scheduling methods. Internet of Things. https://doi.org/10.1016/j.iot.2023.100765

  124. Abdulzahra AM, Al-Qurabat AK (2022) A clustering approach based on fuzzy C-Means in Wireless Sensor Networks for IoT Applications. Karbala Int J Mod Sci 8(4):2. https://doi.org/10.33640/2405-609X.3259

  125. Saleem MA, Shijie Z, Sarwar MU, Ahmad T, Maqbool A, Shivachi CS, Tariq M (2021) Deep learning-based dynamic stable cluster head selection in VANET. J AdvTransp 2021:1–21

    Google Scholar 

  126. Saleem MA, Zhou S, Sharif A, Saba T, Zia MA, Javed A, Roy S (2019) Mittal M Expansion of cluster head stability using fuzzy in cognitive radio CR-VANET. IEEE Access 7:173185–173195

    Article  Google Scholar 

  127. Al-Qurabat AK, Abdulzahra SA (2020) An Overview of Periodic Wireless Sensor Networks to The Internet of Things, 2020 IOP Conference Series: Materials Science and Engineering, IOP Publishing, 928, 032055. https://doi.org/10.1088/1757-899X/928/3/032055

  128. Elhoseny M, Shankar K (2020) Energy efficient optimal routing for communication in VANETs via clustering model. In: Elhoseny M, Hassanien A (eds) Emerging technologies for connected internet of vehicles and intelligent transportation system networks. Studies in systems, decision and control, vol 242. Springer, Cham. https://doi.org/10.1007/978-3-030-22773-9_1

    Chapter  Google Scholar 

  129. Nguyen TH (2023) Jung JJ ACO-based traffic routing method with automated negotiation for connected vehicles. Complex Intell Syst 9:625–636. https://doi.org/10.1007/s40747-022-00833-3

    Article  Google Scholar 

  130. Javed I, Tang X, Shaukat K, Sarwar MU, Alam TM, Hameed IA, Saleem MA (2021) V2X-based mobile localization in 3D wireless sensor network. Secur Commun Netw 2021:1–13

    Article  Google Scholar 

  131. Javed I, Tang X, Saleem MA, Sarwar MU, Tariq M, Shivachi CS (2022) 3D localization for mobile node in wireless sensor network. Wirel Commun Mob Comput 2022

  132. Wang P et al (2023) Graph Optimized Data Offloading for Crowd-AI Hybrid Urban Tracking in Intelligent Transportation Systems. IEEE Trans Intell Transp Syst 24(1):1075–1087. https://doi.org/10.1109/TITS.2022.3141885

    Article  Google Scholar 

  133. Bock F, Di Martino S, Origlia A (2020) Smart parking: using a crowd of taxis to sense on-street parking space availability. IEEE Trans Intell Transp Syst 21(2):496–508. https://doi.org/10.1109/TITS.2019.2899149

    Article  Google Scholar 

  134. Yang X, Gu B, Zheng B, Ding B, Han Y, Yu K (2022) Toward Incentive-Compatible Vehicular Crowdsensing: An Edge-Assisted Hierarchical Framework. IEEE Netw 36(2):162–167. https://doi.org/10.1109/MNET.104.2000773

    Article  Google Scholar 

  135. Xu C, Quan W, Zhang H, Grieco LA (2018) GrIMS: Green Information-Centric Multimedia Streaming Framework in Vehicular Ad Hoc Networks. IEEE Trans Circuits Syst Video Technol 28(2):483–498. https://doi.org/10.1109/TCSVT.2016.2607764

    Article  Google Scholar 

  136. Manias DM, Shami A (2021) Making a Case for Federated Learning in the Internet of Vehicles and Intelligent Transportation Systems. IEEE Network 35(3):88–94. https://doi.org/10.1109/MNET.011.2000552

    Article  Google Scholar 

  137. Jiang JC, Kantarci B, Oktug S, Soyata T (2020) Federated learning in smart city sensing: Challenges and opportunities. Sensors 20(21):6230

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  138. Chinaei MH, Ostry D, Sivaraman V (2018) A novel algorithm for secret key generation in passive backscatter communication systems. In: Cryptology and network security: 16th international conference, CANS 2017, Hong Kong, China, November 30—December 2, 2017, Revised selected papers 16. Springer International Publishing, pp 436–455

    Google Scholar 

  139. Liu D, Yang LT, Zhao R, Wang J, Xie X (2022) Lightweight tensor deep computation model with its application in intelligent transportation systems. IEEE Trans Intell Transp Syst 23(3):2678–2687. https://doi.org/10.1109/TITS.2022.3143861

    Article  Google Scholar 

  140. Ismail T, Gad ME, Mokhtar B (2021) Integrated VLC/RF Wireless Technologies for Reliable Content Caching System in Vehicular Networks. IEEE Access 9:51855–51864. https://doi.org/10.1109/ACCESS.2021.3070397

    Article  Google Scholar 

  141. Kazemi H, Fallah YP, Nix A, Wayne S (2017) Predictive AECMS by Utilization of Intelligent Transportation Systems for Hybrid Electric Vehicle Powertrain Control. IEEE Trans Intell Veh 2(2):75–84. https://doi.org/10.1109/TIV.2017.2716839

    Article  Google Scholar 

  142. Yang C et al (2020) Efficient energy management strategy for hybrid electric vehicles/plug-in hybrid electric vehicles: review and recent advances under intelligent transportation system. IET Intell Transport Syst 14(7):702–711

    Article  Google Scholar 

  143. Suseendran G, Akila D, Vijaykumar H et al (2022) Multi-sensor information fusion for efficient smart transport vehicle tracking and positioning based on deep learning technique. J Supercomput 78:6121–6146. https://doi.org/10.1007/s11227-021-04115-6

    Article  Google Scholar 

  144. Zhu H, Chau SC (2021) Integrating IoT-sensing and crowdsensing for privacy-preserving parking monitoring. In: Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys '21). Association for Computing Machinery, New York, NY, USA, November 2021, p 226–227. https://doi.org/10.1145/3486611.3492229

  145. Lieberman I, Klachek P (2020) Korjagin S Comparison of intelligent transportation systems based on biocybernetic vehicle control systems. Transport Res Procedia 50:355–362. https://doi.org/10.1016/j.trpro.2020.10.042

    Article  Google Scholar 

  146. Lai Y, Xu Y, Mai D, Fan Y, Yang F (2022) Optimized Large-Scale Road Sensing Through Crowdsourced Vehicles. IEEE Trans Intell Transp Syst 23(4):3878–3889. https://doi.org/10.1109/TITS.2022.3147211

    Article  Google Scholar 

  147. Zhang J, Zhang X (2021) Multi-Task Allocation in Mobile Crowd Sensing with Mobility Prediction. In: IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2021.3088291

  148. Carnevale L, Celesti A, Di Pietro M (2018) Galletta A How to Conceive Future Mobility Services in Smart Cities According to the FIWARE frontierCities Experience. IEEE Cloud Comput 5:25–36

    Article  Google Scholar 

  149. Ning Z et al (2021) Blockchain-enabled Intelligent Transportation Systems: A Distributed Crowdsensing Framework. In: IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2021.3079984

  150. Raya M, Hubaux JP (2005) The security of vehicular ad hoc networks. In: Proceedings of the 3rd ACM workshop on security of ad hoc and sensor networks, pp 11–21

    Chapter  Google Scholar 

  151. Jeong JP, Oh TT (2016) Survey on protocols and applications for vehicular sensor networks. Int J Distrib Sens Netw 12(8):1550147716662948. https://doi.org/10.1177/1550147716662948

    Article  Google Scholar 

  152. Samara G, Al-Salihy WAH, Sures R (2010) Security issues and challenges of vehicular Ad Hoc networks (VANET). In: 4th international conference on new trends in information science and service Science, Gyeongju, pp 393–398

  153. Bariah L, Shehada D, Salahat E, Yeun CY (2015) Recent advances in VANET security: A survey. In: 2015 IEEE 82nd vehicular technology conference (VTC2015-Fall), Boston, pp 1–7. https://doi.org/10.1109/VTCFall.2015.7391111

  154. Douceur JR (2002) The Sybil Attack. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  155. Sun J, Zhang C, Zhang Y, Fang Y (2010) An identity-based security system for user privacy in vehicular ad hoc networks. IEEE Trans Parallel Distrib Syst 21(9):1227–1239. https://doi.org/10.1109/TPDS.2010.14

    Article  Google Scholar 

  156. Wagan AA, Jung LT (2014) Security framework for low latency Vanet applications. In: 2014 international conference on computer and information sciences (ICCOINS), Kuala Lumpur, pp 1–6. https://doi.org/10.1109/ICCOINS.2014.6868395

  157. Raya M, Hubaux J-P (2007) Securing vehicular ad hoc networks. J Comput Secur 15(1):39–68

    Article  Google Scholar 

  158. Kent S (2005) IP encapsulating security payload (ESP), RFC 4303. https://doi.org/10.17487/RFC4303, https://rfc-editor.org/rfc/rfc4303.txt

  159. Kent S (2005) IP authentication header, RFC 4302. https://doi.org/10.17487/RFC4302, https://rfc-editor.org/rfc/rfc4302.txt

  160. Jeong JP (2021) IPv6 Wireless Access in Vehicular Environments (IPWAVE): Prob-lem Statement and Use Cases, Internet-draft draft-ietf-ipwave-vehicular-networking-20, Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-ietf-ipwave-vehicular-networking/

  161. Jo HJ, Kim IS, Lee DH (2018) Reliable cooperative authentication for vehicular networks. IEEE Trans Intell Transp Syst 19(4):1065–1079. https://doi.org/10.1109/TITS.2017.2712772

    Article  Google Scholar 

  162. Li W, Song H (2015) ART: an attack-resistant trust management scheme for secur-ing vehicular ad hoc networks. IEEE Trans Intell Transp Syst 17(4):960–969. https://doi.org/10.1109/TITS.2015.2494017

    Article  Google Scholar 

  163. Lau BP, Marakkalage SH, Zhou Y, Hassan NU, Yuen C, Zhang M (2019) Tan UX A survey of data fusion in smart city applications.". Inf Fusion 52:357–374

    Article  Google Scholar 

  164. Cover TM, Hart PE et al (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  Google Scholar 

  165. Bar-Shalom Y, Daum F, Huang J (2009) The probabilistic data association filter. IEEE Control Syst Mag 29(6):82–100

    Article  MathSciNet  Google Scholar 

  166. Shaffer JP (1995) Multiple hypothesis testing. Annu Rev Psychol 46(1):561–584

    Article  ADS  Google Scholar 

  167. Myung IJ (2003) Tutorial on maximum likelihood estimation. J Math Psychol 47(1):90–100

    Article  MathSciNet  Google Scholar 

  168. Welch G, Bishop G (1995) An introduction to the Kalman filter

    Google Scholar 

  169. Ristic B, Arulampalam S, Gordon N (2004) Beyond the kalman filter. IEEE Aerosp Electron Syst Mag 19(7):37–38

    Article  Google Scholar 

  170. Uhlmann JK (2003) Covariance consistency methods for fault-tolerant distributed data fusion. Inf Fusion 4(3):201–215

    Article  Google Scholar 

  171. Box GE, Tiao GC (2011) Bayesian inference in statistical analysis. John Wiley & Sons

    Google Scholar 

  172. Wu H, Siegel M, Stiefelhagen R, Yang J (2002) Sensor fusion using Dempster-Shafer theory [for context-aware HCI], IMTC/2002. In: Proceedings of the 19th IEEE instrumentation and measurement technology conference (IEEE Cat. No.00CH37276), vol 1, Anchorage, pp 7–12. https://doi.org/10.1109/IMTC.2002.1006807

  173. Herrera F, Herrera-Viedma E, Martinez L (2000) A fusion approach for managing multi-granularity linguistic term sets in decision making. Fuzzy Sets Syst 114(1):43–58

    Article  Google Scholar 

  174. Han J, Pei J, Tong H (2022) Data mining: concepts and techniques. Morgan Kaufmann

    Google Scholar 

  175. Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: A review of classification techniques. Emerg Artif Intell Appl Comp Eng 160:3–24

    Google Scholar 

  176. Pacyga DA (1996) Applied linear regression models. University of Chicago Press, Chicago

    Google Scholar 

  177. Makhoul J (1975) Linear prediction: A tutorial review. Proc IEEE 63(4):561–580

    Article  ADS  Google Scholar 

  178. Lork C, Rajasekhar B, Yuen C, Pindoriya NM (2017) How many watts: A data driven approach to aggregated residential air-conditioning load forecasting. In: 2017 IEEE international conference on pervasive computing and communications workshops (PerCom workshops), Kona, pp 285–290. https://doi.org/10.1109/PERCOMW.2017.7917573

  179. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surveys (CSUR) 31(3):264–323

    Article  Google Scholar 

  180. Liao H-J, Lin C-HR, Lin Y-C, Tung K-Y (2013) Intrusion detection system: A comprehensive review. J Netw Comput Appl 36(1):16–24

    Article  Google Scholar 

  181. Zhu XJ (2005) Semi-supervised learning literature survey. University of Wisconsin-Madison Department of Computer Sciences, Tech. Rep.

    Google Scholar 

  182. Jolliffe IT, Cadima J (2016) Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences 374(2065):20150202

    Article  ADS  MathSciNet  Google Scholar 

  183. Zhang F, Zhou B, Liu L, Liu Y, Fung HH, Lin H, Ratti C (2018) Measuring human perceptions of a large-scale urban region using machine learning. Landsc Urban Plan 180:148–160

    Article  Google Scholar 

  184. Miah SJ, Vu HQ, Gammack J, McGrath M (2017) A big data analytics method for tourist behaviour analysis. Inf Manag 54(6):771–785

    Article  Google Scholar 

  185. Nichol J, Wong MS (2005) Modeling urban environmental quality in a tropical city. Landsc Urban Plan 73(1):49–58

    Article  Google Scholar 

  186. Fan C-T, Wang Y-K, Huang C-R (2017) Heterogeneous information fusion and visualization for a large-scale intelligent video surveillance system. IEEE Trans Syst Man Cyber Syst 47(4):593–604

    Article  Google Scholar 

  187. Ware C (2019) Information visualization: perception for design. Morgan Kaufmann

    Google Scholar 

  188. Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Inf Fusion 42:146–157

    Article  Google Scholar 

  189. Morabito FC, Kozma R, Alippi C, Choe Y (2024) Advances in AI, neural networks, and brain computing: An introduction. In: Artificial intelligence in the age of neural networks and brain computing. Academic Press, pp 1–8

    Google Scholar 

  190. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26

    Article  Google Scholar 

  191. Gunning D (2017) Explainable artificial intelligence (XAI). Defense advanced research projects agency (DARPA). nd Web 2(2):1

    Google Scholar 

  192. Kuo CC, Zhang M, Li S, Duan J, Chen Y (2019) Interpretable onvolutional neural networks via feedforward design. J Visual Commun Image Represent 60:346–359. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S104732031930104X

  193. Da Q, Yu Y, Zhou ZH (2014) Learning with augmented class by exploiting unlabeled data. In: Proceedings of the AAAI conference on artificial intelligence, vol 28(1)

    Google Scholar 

  194. Li Y-F, Zhou Z-H (2015) Towards making unlabeled data never hurt. IEEE Trans Pattern Anal Mach Intell 37(1):175–188

    Article  CAS  PubMed  Google Scholar 

  195. Hoo-Chang S, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285

    Article  Google Scholar 

  196. Wu X, Subramanian S, Guha R, White RG, Li J, Lu KW, Bucceri A, Zhang T (2013) Vehicular communications using DSRC: Challenges, enhancements, and evolution. IEEE J Sel Areas Commun 31(9):399–408

    Article  Google Scholar 

  197. Shen W-H, Tsai H-M (2017) Testing vehicle-to-vehicle visible light communications in real-world driving scenarios. In: 2017 IEEE vehicular networking conference (VNC), Turin, pp 187-194. https://doi.org/10.1109/VNC.2017.8275596

    Book  Google Scholar 

  198. Siddiqui MU, Qamar F, Ahmed F, Nguyen QN, Hassan R (2021) Interference management in 5G and beyond network: Requirements, challenges and future directions.". IEEE Access 9:68932–68965

    Article  Google Scholar 

  199. Pathak PH, Feng X, Hu P, Mohapatra P (2015) Visible light communication, networking, and sensing: a survey, potential and challenges. IEEE Commun Surv Tutor 17:2047–2077

    Article  Google Scholar 

  200. Masini BM, Bazzi A, Zanella A (2017) Vehicular visible light networks with full duplex communications. In: 2017 5th IEEE international conference on models and technologies for intelligent transportation systems (MTITS), Naples, pp 98–103. https://doi.org/10.1109/MTITS.2017.8005646

  201. Uysal M, Ghassemlooy Z, Bekkali A, Kadri A, Menouar H (2015) Visible Light Communication for Vehicular Networking: Performance Study of a V2V System Using a Measured Headlamp Beam Pattern Model. IEEE Veh Technol Mag 10:45–53

    Article  Google Scholar 

  202. Venugopal K, Alkhateeb A, Prelcic NG (2017) Heath RW channel estimation for hybrid architecture-based wideband millimeter wave systems”. IEEE J Sel Areas Commun 35(9):1996–2009

    Article  Google Scholar 

  203. Haque KF, Abdelgawad A, Yanambaka VP (2020) Yelamarthi K Lora architecture for v2x communication: An experimental evaluation with vehicles on the move. Sensors 20(23):6876

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  204. Liu CB, Sadeghi B, Knightly EW (2011) Enabling vehicular visible light communication (V2LC) networks. In: Proceedings of the eighth ACM international workshop on vehicular inter-networking, pp 41–50

    Chapter  Google Scholar 

  205. Diyar Khairi MS, Berqia A (2015) Li-Fi the future of vehicular Ad hoc networks. Trans Netw Commun 3(3)

  206. Blinowski G (2019) Security of visible light communication systems—A survey. Phys Commun 34:246–260

    Article  Google Scholar 

  207. Gündogan A, Badalıoğlu A, Spapis P, Awada A (2023) On the Modelling and Performance Analysis of Lower Layer Mobility in 5G-Advanced. In: 2023 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, p 1–6

  208. Yang Y, Hua K (2019) Emerging technologies for 5G-enabled vehicular networks. IEEE Access 7:181117–181141

    Article  Google Scholar 

  209. Matheus LE, Vieira AB, Vieira LF, Vieira MA, Gnawali O (2019) Visible light communication: concepts, applications and challenges. IEEE Commun Surv Tutor 21(4):3204–3237

    Article  Google Scholar 

  210. Wilkins A, Veitch J, Lehman B (2010) LED lighting flicker and potential health concerns: IEEE standard PAR1789 update. In: 2010 IEEE energy conversion congress and exposition, Atlanta, pp 171–178. https://doi.org/10.1109/ECCE.2010.5618050

  211. Hussain R, Hussain F, Zeadally S (2019) Integration of VANET and 5G Security: A review of design and implementation issues. Futur Gener Comput Syst. https://doi.org/10.1016/j.future.2019.07.006

    Article  Google Scholar 

  212. Ma Bo, Guo W, Zhang J (2020) A survey of online data-driven proactive 5G network optimisation using machine learning. IEEE Access 8:35606–35637

    Article  Google Scholar 

  213. Awaisi KS, Abbas A, Zareei M, Khattak HA, Khan MU, Ali M, Din IU, Shah S (2019) Towards a fog enabled efficient car parking architecture. IEEE Access 7:159100–159111

    Article  Google Scholar 

  214. Park SM, Kim YG (2022) A metaverse: Taxonomy, components, applications, and open challenges. IEEE Access 10:4209–4251

    Article  Google Scholar 

  215. Han Y, Oh S (2021) Investigation and research on the negotiation space of mental and mental illness based on Metaverse. In: 2021 international conference on information and communication technology convergence (ICTC). IEEE, pp 673–677

    Chapter  Google Scholar 

  216. Stephenson N (1994) Snow crash. Penguin UK

    Google Scholar 

  217. Petrakou A (2010) Interacting through avatars: Virtual worlds as a context for online education. Comp Edu 54(4):1020–1027. https://www.sciencedirect.com/science/article/pii/S0360131509002929

  218. Fang Z, Cai L, Wang G (2021)) MetaHuman creator the starting point of the metaverse. In: 2021 international symposium on computer technology and information Science (ISCTIS). IEEE, pp 154–157

    Chapter  Google Scholar 

  219. Grivokostopoulou F, Kovas K, Perikos I (2020) The effectiveness of embodied pedagogical agents and their impact on students learning in virtual worlds. Appl Sci 10(5):1739. https://www.mdpi.com/2076-3417/10/5/1739

  220. Batty M (2018) Digital twins. Environ Plan B: Urban Anal City Sci. 45(5):817–820

    Google Scholar 

  221. Bolter JD, Engberg M, MacIntyre B (2021) 8 the myth of total VR: The Metaverse. In: Reality media: augmented and virtual reality. MIT Press, pp 137–146

    Chapter  Google Scholar 

  222. Gaffary Y, Le Gouis B, Marchal M, Argelaguet F, Arnaldi B, Lécuyer A (2017) Ar feels “softer” than vr: Haptic perception of stiffness in augmented versus virtual reality. IEEE Trans Visual Comput Graph 23(11):2372–2377

    Article  Google Scholar 

  223. Pellas N, Mystakidis S, Kazanidis I (2021) Immersive virtual reality in k-12 and higher education: A systematic review of the last decade scientific literature. Virtual Real 25:835–861

    Article  Google Scholar 

  224. Lee M, Norouzi N, Bruder G, Wisniewski PJ, Welch GF (2021) Mixed reality tabletop gameplay: Social interaction with a virtual human capable of physical influence. IEEE Trans Visual Comput Graph 27(8):3534–3545

    Article  Google Scholar 

  225. Gong L, Fast Berglund A, Johansson B (2021) A framework for extended reality system development in manufacturing. IEEE Access 9:24796–24813

    Article  Google Scholar 

  226. Kareem O (2022) Exploring the implications of autonomous vehicles: a comprehensive review. Innov Infrastruct Sol 7:165. https://doi.org/10.1007/s41062-022-00763-6

    Article  Google Scholar 

  227. NISSAN (2020) Invisible-to-visible (i2v). https://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/i2v.html. Accessed 28 Jan 2022

  228. Wang Y, Su Z, Zhang N, Liu D, Xing R, Luan TH et al (2022) A survey on metaverse: Fundamentals, security, and privacy. arXiv:220302662 [csCR] 1–31. https://doi.org/10.48550/arXiv.2203.02662

  229. Falchuk B, Loeb S, Neff R (2018) The social metaverse: Battle for privacy. IEEE Technol Soc Mag 37(2):52–61

    Article  Google Scholar 

  230. Combs V (2022) Spinning up the metaverse flywheel requires better hardware and faster connectivity. Tech Republic. https://www.techrepublic.com/article/spinning-up-the-metaverse-flywheel-requires-better-hardwareand-faster-connectivity/

  231. Dawson D (2022) Network requirements for the metaverse. CircleID. https://circleid.com/posts/20220312-network-requirements-for-themetaverse

  232. Rabinovitsj D (2022) The next big connectivity challenge: Building metaverse ready networks. Tech Meta. https://tech.fb.com/ideas/2022/02/metaverse-ready-networks/

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All the authors are contributed in an equal manner.

Corresponding author

Correspondence to S. V. N. Santhosh Kumar.

Ethics declarations

Ethics approval

Authors provide the ethics approval for the given manuscript.

Consent to publish

All the authors gave permission to consent to publish.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: 1- Track on Networking and Applications

Guest Editor: Vojislav B. Misic

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, Y., Santhosh Kumar, S.V.N. A comprehensive survey on communication techniques for the realization of intelligent transportation systems in IoT based smart cities. Peer-to-Peer Netw. Appl. (2024). https://doi.org/10.1007/s12083-024-01627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12083-024-01627-9

Keywords

Navigation