Skip to main content

Advertisement

Log in

Time to extinction in deteriorating environments

  • ORIGINAL PAPER
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Habitat degradation and destruction are the predominant drivers of population extinction, but there is little theory to guide the analysis of population viability in deteriorating environments. To address this gap, we investigated extinction times in time-varying, demographically stochastic versions of the logistic model for population dynamics. A property of these models is the “extinction delay,” a quantitative measure of the time lag in extinction created by species-specific extinction debt. For completeness, three models were constructed to represent the different demographic routes by which deterioration may affect population dynamics. Numerical analysis for two notional life histories indicated that the demographic response to environmental deterioration had a large effect on extinction delay, but a third analysis showed that the trajectory of the decline in carrying capacity ultimately characterized its magnitude. A concave decline in carrying capacity produced a large extinction delay while a small delay occurred with a convex decline. Furthermore, our results explore the non-monotonicity of extinction debt with respect to the speed of deterioration. A peak is present at low levels of deterioration, and the height of the peak and the asymptote of delay are affected by both life history parameterizations and the rate of change of the carrying capacity. The results suggest that population viability analyses must consider not only environmental deterioration, but also the effects of deterioration on the trajectory of the decline in carrying capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson DF (2007) A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J Chem Phys 127:214107

    Article  PubMed  Google Scholar 

  • Baillie JEM, Hilton-Taylor C, Stuart SN (eds) (2004) IUCN Red List of threatened species: a global species assessment. Gland, Switzerland, and Cambridge, UK

  • Corlett RT (2015) The Anthropocene concept in ecology and conservation. Trends in Ecol Evol 30(1):36–41. doi:10.1016/j.tree.2014.10.007

    Article  Google Scholar 

  • Drake JM, Griffen BD (2010) Early warning signals of extinction in deteriorating environments. Nature 467(7314):456–459. doi:10.1038/nature09389

    Article  CAS  PubMed  Google Scholar 

  • Gardiner C (2009) Stochastic methods: a handbook for the natural and social sciences, 4th edn. Springer, Berlin

    Google Scholar 

  • Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem 104(9):1876–1889

    Article  CAS  Google Scholar 

  • Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115(4):1716–1711

    Article  CAS  Google Scholar 

  • Hallam TG, Clark CE (1981) Non-autonomous logistic equations as models of populations in deteriorating environment. J Theor Biol 93(2):303–311. doi:10.1016/0022-5193(81)90106-5

    Article  Google Scholar 

  • Haugen A (1942) Life history studies of the cottontail rabbit in southwestern Michigan. Am Mid Nat 28(1):204–244. doi:10.2307/2420701

    Article  Google Scholar 

  • Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77. doi:10.1111/j.1461-0248.2005.00841.x

    PubMed  Google Scholar 

  • Hicks LL, Herter DR, Early RJ (2003) Clines in life history characteristics of the spotted owl in Washington. Northwestern Nat 84(2):57–67. doi:10.2307/3536730

    Article  Google Scholar 

  • Highland S, Jones J (2014) Extinction debt in naturally contracting mountain meadows in the Pacific Northwest, USA: varying responses of plants and feeding guilds of nocturnal moths. Biodivers Conserv 23(10):2529–2544. doi:10.1007/s10531-014-0737-z

    Article  Google Scholar 

  • Huang SL, Hao Y, Mei Z, Turvey ST, Wang D (2012) Common pattern of population decline for freshwater cetacean species in deteriorating habitats. Freshw Biol 57(6):1266–1276. doi:10.1111/j.1365-2427.2012.02772.x

    Article  Google Scholar 

  • Hylander K, Ehrlén J (2013) The mechanisms causing extinction debts. Trends Ecol Evol 28(6):341–346. doi:10.1016/j.tree.2013.01.010

    Article  PubMed  Google Scholar 

  • Johnson P (2014) Adaptivetau: Tau-leaping stochastic simulation. R package version 2.1. https://CRAN.R-project.org/package=adaptivetau.

  • Kindsvater HK, Mangel M, Reynolds JD, Dulvy NK (2016) Ten principles from evolutionary ecology essential for effective marine conservation. Ecol Evol 6(7):2125–2138. doi:10.1002/ece2.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodá F (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24(10):564–571. doi:10.1016/j.tree.2009.04.011

    Article  PubMed  Google Scholar 

  • Lande R (1988) Demographic models of the northern spotted owl (Strix occidentalis caurina). Oecologia 75(4):601–607

    Article  CAS  PubMed  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscpare connectivity affects present plant species diversity. Ecol 85(7):1840–1845

    Article  Google Scholar 

  • Lira PK, Ewers RM, Banks-Leite C, Pardini R, Metzger JP (2012) Evaluating the legacy of landscape history: extinction debt and species credit in bird and small mammal assemblages in the Brazilian Atlantic forest. J Appl Ecol 49:1325–1333. doi:10.1111/j.1365-2664.2012.02214.x

    Article  Google Scholar 

  • Loehle C, Li BL (1996) Habitat destruction and the extinction debt revisited. Ecol App 6(3):784–789. doi:10.2307/2269483

    Article  Google Scholar 

  • McGill BJ, Dornelas M, Gotelli NJ, Magurran AE (2015) Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol Evol 30(2):104–113. doi:10.1016/j.tree.2014.11.006

    Article  PubMed  Google Scholar 

  • Ovaskainen O, Hanski I (2002) Transient dynamics in metapopulation response to perturbation. Theor Popul Biol 61:285–295

    Article  PubMed  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A et al (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371(6492):65–66. doi:10.1038/371065a0

    Article  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84(5):468–478

    Google Scholar 

  • Griffen BD, Drake JM (2008) Effects of habitat quality and size on extinction in experimental populations. Proc R Soc B 275(1648):2251-2256. doi:10.1098/rspb.2008.0518

  • Hanski I, Ovaskainen O (2002) Extinction Debt at Extinction Threshold. Conserv Biol 16 (3):666-673. doi:10.1046/j.1523-1739.2002.00342.x

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Zarada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarada, K., Drake, J.M. Time to extinction in deteriorating environments. Theor Ecol 10, 65–71 (2017). https://doi.org/10.1007/s12080-016-0311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-016-0311-2

Keywords

Navigation