Skip to main content
Log in

Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Mesenchymal stem cells (MSCs) are multipotent, self-renewing stromal cells found in a variety of adult tissues. MSCs possess a remarkable ability to migrate towards tumor sites, known as homing. This homing process is mediated by various factors, including chemokines, growth factors, and extracellular matrix components present in the tumor microenvironment. MSCs release extracellular vesicles known as exosomes (MSC-Exos), which have been suggested to serve a key role in mediating a wide variety of MSC activities. Through cell–cell communication, MSC-Exos have been shown to alter recipient cell phenotype or function and play as a novel cell-free alternative for MSC-based cell therapy. However, MSC recruitment to tumors allows for their interaction with cancer cells and subsequent regulation of tumor behavior. MSC-Exos act as tumor niche modulators via transferring exosomal contents, such as specific proteins or genetic materials, to the nearby cancer cells, leading to either promotion or suppression of tumorigenesis, angiogenesis, and metastasis, depending on the specific microenvironmental cues and recipient cell characteristics. Consequently, there is still a debate about the precise relationship between tumor cells and MSC-Exos, and it is unclear how MSC-Exos impacts tumor cells. Although the dysregulation of miRNAs is caused by the progression of cancer, they also play a direct role in either promoting or inhibiting tumor growth as they act as either oncogenes or tumor suppressors. The utilization of MSC-Exos may prove to be an effective method for restoring miRNA as a means of treating cancer. This review aimed to present the existing understanding of the impact that MSC-Exos could have on cancer. To begin with, we presented a brief explanation of exosomes, MSCs, and MSC-Exos. Following this, we delved into the impact of MSC-Exos on cancer growth, EMT, metastasis, angiogenesis, resistance to chemotherapy and radiotherapy, and modulation of the immune system.

Graphical abstract

Opposing effects of mesenchymal stem cells-derived exosomes on cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MVBs:

Multivesicular bodies

PTEN:

Phosphatase and tensin homolog

References

  • Abdelgawad M et al (2021) Mesenchymal stem cell-based therapy and exosomes in COVID-19: current trends and prospects. Stem Cell Res Ther 12(1):1–20

    Google Scholar 

  • Aboudehen K (2020) Regulation of mTOR signaling by long non-coding RNA. Biochim Biophys Acta (BBA)-Gene Regul Mech 1863(4):194449

    CAS  Google Scholar 

  • Akers JC et al (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113(1):1–11

    PubMed  PubMed Central  Google Scholar 

  • Arya SB et al (2022) Ceramide-rich microdomains facilitate nuclear envelope budding for non-conventional exosome formation. Nat Cell Biol 24(7):1019–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asgari Taei A et al (2022) Paracrine effects of mesenchymal stem cells in ischemic stroke: opportunities and challenges. Mol Neurobiol 59(10):6281–6306

    CAS  PubMed  Google Scholar 

  • Bae KS et al (2011) Neuron-like differentiation of bone marrow-derived mesenchymal stem cells. Yonsei Med J 52(3):401–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baguley B (2010) Multiple drug resistance mechanisms in cancer. Mol Biotechnol 46(3):308–316

    CAS  PubMed  Google Scholar 

  • Biswas S et al (2019) Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-polarized macrophages in breast cancer. J Immunol 203(12):3447–3460

    CAS  PubMed  Google Scholar 

  • Blazquez R et al (2014) Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol 5:556

    PubMed  PubMed Central  Google Scholar 

  • Bliss SA et al (2016) Mesenchymal stem cell–derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Can Res 76(19):5832–5844

    CAS  Google Scholar 

  • Bliss SA et al (2016) Mesenchymal stem cell–derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res 76(19):5832–5844

    CAS  PubMed  Google Scholar 

  • Boelens MC et al (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159(3):499–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Börger V et al (2017) Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci 18(7):1450

    PubMed  PubMed Central  Google Scholar 

  • Bruno S et al (2013) Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev 22(5):758–771

    CAS  PubMed  Google Scholar 

  • Burja B et al (2020) Human mesenchymal stromal cells from different tissues exhibit unique responses to different inflammatory stimuli. Current Res Transl Med 68(4):217–224

    Google Scholar 

  • Buzas EI et al (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10(6):356–364

    CAS  PubMed  Google Scholar 

  • Camussi G et al (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848

    CAS  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    CAS  PubMed  Google Scholar 

  • Charoenviriyakul C et al (2017) Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics. Eur J Pharm Sci 96:316–322

    CAS  PubMed  Google Scholar 

  • Chen TS et al (2011) Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med 9(1):1–10

    Google Scholar 

  • Chen Y et al (2019) Adipose-derived mesenchymal stem cells exhibit tumor tropism and promote tumorsphere formation of breast cancer cells. Oncol Rep 41(4):2126–2136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Hill AF (2022) Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discovery 21(5):379–399

    CAS  PubMed  Google Scholar 

  • Cheng Q et al (2017) Multiple myeloma-derived exosomes regulate the functions of mesenchymal stem cells partially via modulating miR-21 and miR-146a. Stem Cells Int 2017:9012152

    PubMed  PubMed Central  Google Scholar 

  • Chouaib B et al (2023) Towards the standardization of mesenchymal stem cell secretome-derived product manufacturing for tissue regeneration. Int J Mol Sci 24(16):12594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury R et al (2015) Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget 6(2):715

    PubMed  Google Scholar 

  • Cloutier N et al (2013) The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med 5(2):235–249

    CAS  PubMed  Google Scholar 

  • Cunningham CJ, Redondo-Castro E, Allan SM (2018) The therapeutic potential of the mesenchymal stem cell secretome in ischaemic stroke. J Cereb Blood Flow Metab 38(8):1276–1292

    PubMed  PubMed Central  Google Scholar 

  • Daneshmandi L et al (2020) Emergence of the stem cell secretome in regenerative engineering. Trends Biotechnol 38(12):1373–1384

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Araujo Farias V et al (2018) Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Mol Cancer 17(1):1–12

    Google Scholar 

  • Dejean E et al (2011) Hypoxia-microRNA-16 downregulation induces VEGF expression in anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphomas. Leukemia 25(12):1882–1890

    CAS  PubMed  Google Scholar 

  • Del Fattore A et al (2015) Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin Biol Therapy 15(4):495–504

    Google Scholar 

  • Ding Y et al (2022) Mesenchymal stem cell-derived exosomes: a promising therapeutic agent for the treatment of liver diseases. Int J Mol Sci 23(18):10972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong L et al (2018) Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410. Cell Death Dis 9(2):1–13

    Google Scholar 

  • Dong R et al (2019) MSC-derived exosomes-based therapy for peripheral nerve injury: a novel therapeutic strategy. BioMed Res Int 2019:6458237

    PubMed  PubMed Central  Google Scholar 

  • Dong X et al (2020) Exosomes and breast cancer drug resistance. Cell Death Dis 11(11):987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong B et al (2021) MiRNA-mediated EMT and CSCs in cancer chemoresistance. Exp Hematol Oncol 10(1):1–12

    Google Scholar 

  • Driscoll J, Patel T (2019) The mesenchymal stem cell secretome as an acellular regenerative therapy for liver disease. J Gastroenterol 54(9):763–773

    PubMed  PubMed Central  Google Scholar 

  • Du T et al (2014) Microvesicles derived from human Wharton’s jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor. PLoS ONE 9(5):e96836

    PubMed  PubMed Central  Google Scholar 

  • Du L, Tao X, Shen X (2021) Human umbilical cord mesenchymal stem cell-derived exosomes inhibit migration and invasion of breast cancer cells via miR-21-5p/ZNF367 pathway. Breast Cancer 28:829–837

    PubMed  Google Scholar 

  • Eterno V et al (2014) Adipose-derived Mesenchymal Stem Cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling. Oncotarget 5(3):613

    PubMed  Google Scholar 

  • Feng Y et al (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE 9(2):e88685

    PubMed  PubMed Central  Google Scholar 

  • Figueroa J et al (2017a) Exosomes from glioma-associated mesenchymal stem cells increase the tumorigenicity of glioma stem-like cells via transfer of miR-1587GA-hMSCs regulate GSCs via exosomal miRNA. Can Res 77(21):5808–5819

    CAS  Google Scholar 

  • Fonsato V et al (2012) Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells 30(9):1985–1998

    CAS  PubMed  Google Scholar 

  • Friedenstein AJ et al (1968) Heterotopic transplants of bone marrow. Transplantation 6(2):230–247

    CAS  PubMed  Google Scholar 

  • Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009

    CAS  PubMed  Google Scholar 

  • Gallagher RE et al (2006) Relapse of acute promyelocytic leukemia with PML-RARα mutant subclones independent of proximate all-trans retinoic acid selection pressure. Leukemia 20(4):556–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesh K, Massagué J (2021) Targeting metastatic cancer. Nat Med 27(1):34–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garnier D et al (2022) The activation of mesenchymal stem cells by glioblastoma microvesicles alters their exosomal secretion of miR-100-5p, miR-9-5p and let-7d-5p. Biomedicines 10(1):112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh CS (2019) The first metal based anticancer drug. 88:102925

  • Gibbings DJ et al (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11(9):1143–1149

    CAS  PubMed  Google Scholar 

  • Giovannelli L et al (2023) Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 29:16–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong M et al (2017a) Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget 8(28):45200

    PubMed  PubMed Central  Google Scholar 

  • Gu H et al (2016a) Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway. Mol Med Rep 14(4):3452–3458

    CAS  PubMed  Google Scholar 

  • Guerra F, Arbini AA, Moro L (2017) Mitochondria and cancer chemoresistance. Biochim Biophys Acta (BBA)-Bioenerg 1858(8):686–699

    CAS  Google Scholar 

  • Gupta S et al (2018) An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Res Ther 9:1–11

    CAS  Google Scholar 

  • György B et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688

    PubMed  PubMed Central  Google Scholar 

  • Harding C (1983) Henser 1. Stahl p. Receptor mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Bioi 97:329–339

    CAS  Google Scholar 

  • Harrell CR et al (2019) Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells 8(12):1605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrell CR et al (2019) Molecular mechanisms responsible for anti-inflammatory and immunosuppressive effects of mesenchymal stem cell-derived factors. Tissue engineering and regenerative medicine. Springer

    Google Scholar 

  • Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208

    CAS  PubMed  Google Scholar 

  • Heydari Z et al (2023) EVs vs. EVs: MSCs and Tregs as a source of invisible possibilities. J Mol Med 101(1–2):51–63

    CAS  PubMed  Google Scholar 

  • Hua X et al (2020) Roles of S100 family members in drug resistance in tumors: status and prospects. Biomed Pharmacother 127:110156

    CAS  PubMed  Google Scholar 

  • Huang Y et al (2020) Exosomes derived from bone marrow mesenchymal stem cells promote osteosarcoma development by activating oncogenic autophagy. J Bone Oncol 21:100280

    PubMed  PubMed Central  Google Scholar 

  • Huang J et al (2023) Extracellular vesicles as a novel mediator of interkingdom communication. Cytokine Growth Factor Rev 73:173

    CAS  PubMed  Google Scholar 

  • Jahan S et al (2022) Pioneer role of extracellular vesicles as modulators of cancer initiation in progression, drug therapy, and vaccine prospects. Cells 11(3):490

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jahangiri B et al (2022) Exosomes, autophagy and ER stress pathways in human diseases: cross-regulation and therapeutic approaches. Biochim Biophys Acta (BBA)-Mol Basis Dis 1868(10):166484

    CAS  Google Scholar 

  • Jahangiri B et al (2022) MSC-Derived exosomes suppress colorectal cancer cell proliferation and metastasis via miR-100/mTOR/miR-143 pathway. Int J Pharm 627:122214

    CAS  PubMed  Google Scholar 

  • Jena BC, Mandal M (2021) The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: An insight towards tumor-microenvironment interaction. Biochim Biophys Acta (BBA) Rev Cancer 1875(1):188488

    CAS  Google Scholar 

  • Jeppesen DK et al (2019) Reassessment of exosome composition. Cell 177(2):428-445.e18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji R et al (2015a) Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle 14(15):2473–2483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Z et al (2020) Adipose mesenchymal stem cell-derived exosomal microRNA-1236 reduces resistance of breast cancer cells to cisplatin by suppressing SLC9A1 and the Wnt/β-catenin signaling. Cancer Manag Res 12:8733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Z et al (2022) Crosstalk of exosomal non-coding RNAs in the tumor microenvironment: novel frontiers. Front Immunol 13:900155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S et al (2019) Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPN2. J Exp Clin Cancer Res 38(1):1–16

    Google Scholar 

  • Johnstone RM et al (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420

    CAS  PubMed  Google Scholar 

  • Joo HS et al (2020) Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int J Mol Sci 21(3):727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91(4):431–437

    CAS  PubMed  Google Scholar 

  • Kalimuthu S et al (2016) In Vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model. Sci Rep 6(1):30418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karaoz E, Sun E, Demir CS (2019) Mesenchymal stem cell-derived exosomes do not promote the proliferation of cancer cells in vitro. Int J Physiol Pathophysiol Pharmacol 11(4):177–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kariminekoo S et al (2016) Implications of mesenchymal stem cells in regenerative medicine. Artif Cells Nanomed Biotechnol 44(3):749–757

    CAS  PubMed  Google Scholar 

  • Katakowski M et al (2013) Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 335(1):201–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kfoury Y, Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16(3):239–253

    CAS  PubMed  Google Scholar 

  • Khan AA et al (2020) Significant transcriptomic changes are associated with differentiation of bone marrow-derived mesenchymal stem cells into neural progenitor-like cells in the presence of bFGF and EGF. Cell Biosci 10(1):1–18

    Google Scholar 

  • Khare D et al (2018) Mesenchymal stromal cell-derived exosomes affect mRNA expression and function of B-lymphocytes. Front Immunol 9:3053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilpinen L et al (2013) Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J Extracell Vesicles 2(1):21927

    Google Scholar 

  • Kim HJ et al (2022) Secretome of stem cells: roles of extracellular vesicles in diseases, stemness, differentiation, and reprogramming. Tissue Eng Regener Med 19(1):19–33

    CAS  Google Scholar 

  • Ko S-F et al (2015) Adipose-derived mesenchymal stem cell exosomes suppress hepatocellular carcinoma growth in a rat model: apparent diffusion coefficient, natural killer T-cell responses, and histopathological features. Stem Cells Int 2015:853506

    PubMed  PubMed Central  Google Scholar 

  • La Greca A et al (2018) Extracellular vesicles from pluripotent stem cell-derived mesenchymal stem cells acquire a stromal modulatory proteomic pattern during differentiation. Exp Mol Med 50(9):1–12

    PubMed  Google Scholar 

  • Lai RC et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research 4(3):214–222

    CAS  PubMed  Google Scholar 

  • Lankford KL et al (2018) Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS ONE 13(1):e0190358

    PubMed  PubMed Central  Google Scholar 

  • Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E (2016) Mesenchymal stem cells derived from dental pulp: a review. Stem Cells Int 2016:4709572

    PubMed  Google Scholar 

  • Lee C et al (2012a) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J-K et al (2013b) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE 8(12):e84256

    PubMed  PubMed Central  Google Scholar 

  • Lee HK et al (2013ca) Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal. Oncotarget 4(2):346

    PubMed  PubMed Central  Google Scholar 

  • Li T et al (2015) Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther 15(9):1293–1306

    CAS  PubMed  Google Scholar 

  • Li P et al (2017) Progress in exosome isolation techniques. Theranostics 7(3):789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2022) Extracellular vesicle-mediated crosstalk between pancreatic cancer and stromal cells in the tumor microenvironment. J Nanobiotechnol 20(1):1–21

    Google Scholar 

  • Liang X et al (2016) Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 129(11):2182–2189

    CAS  PubMed  Google Scholar 

  • Lin R, Wang S, Zhao RC (2013a) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem 383:13–20

    CAS  PubMed  Google Scholar 

  • Lin HD et al (2014a) Human Wharton’s jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells. Stem Cell Rev Rep 10(4):573–586

    PubMed  Google Scholar 

  • Lin S-S et al (2014b) Bone marrow mesenchymal stem cell-derived microvesicles protect rat pheochromocytoma PC12 cells from glutamate-induced injury via a PI3K/Akt dependent pathway. Neurochem Res 39(5):922–931

    CAS  PubMed  Google Scholar 

  • Lin Z et al (2022) Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol Cancer 21(1):179

    PubMed  PubMed Central  Google Scholar 

  • Liu H et al (2019) Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight 4(24):e131273

    PubMed  PubMed Central  Google Scholar 

  • Liu W-Z, Ma Z-J, Kang X-W (2022) Current status and outlook of advances in exosome isolation. Anal Bioanal Chem 414(24):7123–7141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lobb RJ et al (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4(1):27031

    PubMed  Google Scholar 

  • Lopatina T et al (2016) Cross talk between cancer and mesenchymal stem cells through extracellular vesicles carrying nucleic acids. Front Oncol 6:125

    PubMed  PubMed Central  Google Scholar 

  • Lu M et al (2021) The role of extracellular vesicles in the pathogenesis and treatment of autoimmune disorders. Front Immunol 12:566299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T et al (2020) Mesenchymal stem cell-secreted exosome promotes chemoresistance in breast cancer via enhancing miR-21-5p-mediated S100A6 expression. Mol Therapy-Oncolyt 19:283–293

    CAS  Google Scholar 

  • Luo T, von der Ohe J, Hass R (2021) MSC-derived extracellular vesicles in tumors and therapy. Cancers 13(20):5212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv LL et al (2018) Therapeutic application of extracellular vesicles in kidney disease: promises and challenges. J Cell Mol Med 22(2):728–737

    PubMed  Google Scholar 

  • Lyu T et al (2021) Exosomes from BM-MSCs promote acute myeloid leukemia cell proliferation, invasion and chemoresistance via upregulation of S100A4. Exp Hematol Oncol 10(1):1–13

    Google Scholar 

  • Ma Y-S et al (2021) Exosomal microRNA-15a from mesenchymal stem cells impedes hepatocellular carcinoma progression via downregulation of SALL4. Cell Death Discov 7(1):224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maffey A et al (2017) Mesenchymal stem cells from tumor microenvironment favour breast cancer stem cell proliferation, cancerogenic and metastatic potential, via ionotropic purinergic signalling. Sci Rep 7(1):1–9

    CAS  Google Scholar 

  • Mandel K et al (2013) Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo. Stem Cells Dev 22(23):3114–3127

    CAS  PubMed  Google Scholar 

  • Mao F et al (2017) Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. BioMed Res Int 2017:535670

    Google Scholar 

  • Mason TE et al (2010) Association of CD14 variant with prostate cancer in African American men. Prostate 70(3):262–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mastronardi ML et al (2011) Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit Care Med 39(7):1739–1748

    CAS  PubMed  Google Scholar 

  • Mathieu M et al (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17

    CAS  PubMed  Google Scholar 

  • McBride JD et al (2017) Bone marrow mesenchymal stem cell-derived CD63+ exosomes transport Wnt3a exteriorly and enhance dermal fibroblast proliferation, migration, and angiogenesis in vitro. Stem Cells Dev 26(19):1384–1398

    CAS  PubMed  Google Scholar 

  • Melzer C, Yang Y, Hass R (2016) Interaction of MSC with tumor cells. Cell Commun Signal 14(1):1–12

    Google Scholar 

  • Miclau K et al (2023) Cellular expansion of MSCs: shifting the regenerative potential. Aging Cell 22(1):e13759

    CAS  PubMed  Google Scholar 

  • Mishra SK, Siddique HR, Saleem M (2012) S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev 31(1):163–172

    CAS  PubMed  Google Scholar 

  • Mokarizadeh A et al (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147(1–2):47–54

    CAS  PubMed  Google Scholar 

  • Munoz-Perez E et al (2021) Mesenchymal stromal cell secretome for the treatment of immune-mediated inflammatory diseases: latest trends in isolation, content optimization and delivery avenues. Pharmaceutics 13(11):1802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nejman D et al (2020) The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368(6494):973–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J et al (2019) Exosomes in cancer radioresistance. Front Oncol 9:869

    PubMed  PubMed Central  Google Scholar 

  • Ning S et al (2023) Exosomal miR-99b-5p secreted from mesenchymal stem cells can retard the progression of colorectal cancer by targeting FGFR3. Stem Cell Rev Rep 1–17

  • O’Brien KP et al (2018) Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene 37(16):2137–2149

    PubMed  Google Scholar 

  • O’Brien K et al (2020) RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 21(10):585–606

    PubMed  PubMed Central  Google Scholar 

  • O’Neill HC, Quah BJ (2008) Exosomes secreted by bacterially infected macrophages are proinflammatory. Sci Signal 1(6):pe8–pe8

    PubMed  Google Scholar 

  • Ohta N et al (2015) Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes. PLoS ONE 10(5):e0123756

    PubMed  PubMed Central  Google Scholar 

  • Olejarz W et al (2020) Exosomes in angiogenesis and anti-angiogenic therapy in cancers. Int J Mol Sci 21(16):5840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ono M et al (2014a) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 7(332):ra63–ra63

    PubMed  Google Scholar 

  • Pakravan K et al (2017) MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol 40:457–470

    CAS  Google Scholar 

  • Parolini O et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first International Workshop on Placenta Derived Stem Cells. Stem Cells 26(2):300–311

    PubMed  Google Scholar 

  • Pegtel DM, Gould SJ (2019) Exosomes. Annu Rev Biochem 88:487–514

    CAS  PubMed  Google Scholar 

  • Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35(4):851–858

    CAS  PubMed  Google Scholar 

  • Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    CAS  PubMed  Google Scholar 

  • Prakash PS et al (2012) Human microparticles generated during sepsis in patients with critical illness are neutrophil-derived and modulate the immune response. J Trauma Acute Care Surg 73(2):401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J et al (2017) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol Biochem 42(6):2242–2254

    CAS  PubMed  Google Scholar 

  • Qi J, Zhang R, Wang Y (2021) Exosomal miR-21-5p derived from bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion by targeting PIK3R1. J Cell Mol Med 25(23):11016–11030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian X et al (2021a) Immunosuppressive effects of mesenchymal stem cells-derived exosomes. Stem Cell Rev Rep 17:411–427

    CAS  PubMed  Google Scholar 

  • Qu L et al (2016) Exosome-transmitted lncARSR promotes sunitinib resistance in renal cancer by acting as a competing endogenous RNA. Cancer Cell 29(5):653–668

    CAS  PubMed  Google Scholar 

  • Rana S, Zöller M (2011) Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans 39(2):559–562

    CAS  PubMed  Google Scholar 

  • Record M et al (2014) Exosomes as new vesicular lipid transporters involved in cell–cell communication and various pathophysiologies. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1841(1):108–120

    CAS  Google Scholar 

  • Ren W et al (2019) Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J Exp Clin Cancer Res 38:1–14

    CAS  Google Scholar 

  • Reza AMMT et al (2016) Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep 6(1):38498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roccaro AM et al (2013) BM mesenchymal stromal cell–derived exosomes facilitate multiple myeloma progression. J Clin Investig 123(4):1542–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatke B et al (2023) Extracellular vesicles biogenesis and uptake concepts: a comprehensive guide to studying host–pathogen communication. Mol Microbiol

  • Saeedi P, Halabian R, Fooladi AAI (2019) A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig 6:34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sagaradze G et al (2019) A magic kick for regeneration: role of mesenchymal stromal cell secretome in spermatogonial stem cell niche recovery. Stem Cell Res Ther 10(1):1–10

    Google Scholar 

  • Sandiford OA et al (2021) Mesenchymal stem cell-secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular regionbone marrow perivascular niche in breast cancer dormancy. Cancer Res 81(6):1567–1582

    CAS  PubMed  Google Scholar 

  • Shahir M et al (2020) Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells. J Cell Physiol 235(10):7043–7055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang C et al (2022) Exosomes from cancer-associated mesenchymal stem cells transmit TMBIM6 to promote the malignant behavior of hepatocellular carcinoma via activating PI3K/AKT pathway. Front Oncol 12:868726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A (2018) Role of stem cell derived exosomes in tumor biology. Int J Cancer 142(6):1086–1092

    CAS  PubMed  Google Scholar 

  • Shen M, Chen T (2021) Mesenchymal stem cell-derived exosomes and their potential agents in hematological diseases. Oxid Med Cell Longev 2021:1–13

    Google Scholar 

  • Shen D, He Z (2021) Mesenchymal stem cell-derived exosomes regulate the polarization and inflammatory response of macrophages via miR-21–5p to promote repair after myocardial reperfusion injury. Ann Transl Med 9(16):1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y et al (2017) Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 16(1):35–52

    CAS  PubMed  Google Scholar 

  • Shimbo K et al (2014) Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochem Biophys Res Commun 445(2):381–387

    CAS  PubMed  Google Scholar 

  • Shojaei S et al (2019a) Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: tumor progression versus tumor suppression. J Cell Physiol 234(4):3394–3409

    CAS  PubMed  Google Scholar 

  • Soares Martins T et al (2018) Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS ONE 13(6):e0198820

    PubMed  PubMed Central  Google Scholar 

  • Sokolova V et al (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87:146

    CAS  PubMed  Google Scholar 

  • Stavrou A, Ortiz A (2022) Extracellular vesicles: a novel tool in nanomedicine and cancer treatment. Cancers 14(18):4450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steeg PS (2016) Targeting metastasis. Nat Rev Cancer 16(4):201–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suchorska WM, Lach MS (2016) The role of exosomes in tumor progression and metastasis (Review). Oncol Rep 35(3):1237–1244

    CAS  PubMed  Google Scholar 

  • Sun L et al (2017) Exosomes derived from human umbilical cord mesenchymal stem cells protect against cisplatin-induced ovarian granulosa cell stress and apoptosis in vitro. Sci Rep 7(1):1–13

    Google Scholar 

  • Suzuki K et al (2011) Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med 17(7):579–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tai YL et al (2018) Exosomes in cancer development and clinical applications. Cancer Sci 109(8):2364–2374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara K et al (2016a) 245 MicroRNA-145 mediates the inhibitory effect of adipose-derived stem cells on androgen-independent prostate cancer. Eur Urol Suppl 3(15):e245

    Google Scholar 

  • Takahara K et al (2016b) microRNA-145 mediates the inhibitory effect of adipose tissue-derived stromal cells on prostate cancer. Stem Cells Dev 25(17):1290–1298

    CAS  PubMed  Google Scholar 

  • Tavasolian F et al (2021) The impact of immune cell-derived exosomes on immune response initiation and immune system function. Curr Pharm Des 27(2):197–205

    CAS  PubMed  Google Scholar 

  • Tesarova L et al (2020) Umbilical cord-derived mesenchymal stem cells are able to use bFGF treatment and represent a superb tool for immunosuppressive clinical applications. Int J Mol Sci 21(15):5366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toh WS et al (2018) Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy 20(12):1419–1426

    CAS  PubMed  Google Scholar 

  • Tran PH et al (2020) Exosomes and nanoengineering: a match made for precision therapeutics. Adv Mater 32(18):1904040

    CAS  Google Scholar 

  • Vakhshiteh F, Atyabi F, Ostad SN (2019) Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomed 14:2847–2860

    CAS  Google Scholar 

  • Vakhshiteh F et al (2021) Exosomes derived from miR-34a-overexpressing mesenchymal stem cells inhibit in vitro tumor growth: A new approach for drug delivery. Life Sci 266:118871

    CAS  PubMed  Google Scholar 

  • Valadi H et al (2007) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 9:654–659

    CAS  PubMed  Google Scholar 

  • Vallabhaneni KC et al (2015) Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget 6(7):4953

    PubMed  Google Scholar 

  • Vallabhaneni KC et al (2017) Stromal cell extracellular vesicular cargo mediated regulation of breast cancer cell metastasis via ubiquitin conjugating enzyme E2 N pathway. Oncotarget 8(66):109861

    PubMed  PubMed Central  Google Scholar 

  • van de Wakker SI et al (2023) Extracellular vesicle heterogeneity and its impact for regenerative medicine applications. Pharmacol Rev 75(5):1043–1061

    PubMed  Google Scholar 

  • Van Dongen HM et al (2016) Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol Mol Biol Rev 80(2):369–386

    PubMed  PubMed Central  Google Scholar 

  • Van Niel G, d’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228

    PubMed  Google Scholar 

  • van Niel G et al (2022) Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat Rev Mol Cell Biol 23(5):369–382

    PubMed  Google Scholar 

  • Viola S et al (2016) Alterations in acute myeloid leukaemia bone marrow stromal cell exosome content coincide with gains in tyrosine kinase inhibitor resistance. Br J Haematol 172(6):983

    CAS  PubMed  Google Scholar 

  • Vlachakis D et al (2021) Functions, pathophysiology and current insights of exosomal endocrinology. Mol Med Rep 23(1):1–1

    Google Scholar 

  • Vlassov AV et al (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta (BBA)-Gen Subj 1820(7):940–948

    CAS  Google Scholar 

  • Von Bartheld CS, Altick AL (2011) Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 93(3):313–340

    Google Scholar 

  • Walker JD, Maier CL, Pober JS (2009) Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol 182(3):1548–1559

    CAS  PubMed  Google Scholar 

  • Walker S et al (2019) Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics 9(26):8001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter SG et al (2020) Molecular and functional phenotypes of human bone marrow-derived mesenchymal stromal cells depend on harvesting techniques. Int J Mol Sci 21(12):4382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wan F-Z et al (2020) Exosomes overexpressing miR-34c inhibit malignant behavior and reverse the radioresistance of nasopharyngeal carcinoma. J Transl Med 18(1):1–19

    Google Scholar 

  • Wang J-G et al (2011) Monocytic microparticles activate endothelial cells in an IL-1β–dependent manner. Blood J Am Soc Hematol 118(8):2366–2374

    CAS  Google Scholar 

  • Wang J et al (2014) Bone marrow stromal cell–derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood J Am Soc Hematol 124(4):555–566

    CAS  Google Scholar 

  • Wang S et al (2019) Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Stem Cell Res Ther 10(1):117

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Chen D, Ho EA (2021) Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release 329:894–906

    CAS  PubMed  Google Scholar 

  • Wang L et al (2022) Mesenchymal stem cells and their derived exosomes promote malignant phenotype of polyploid non-small-cell lung cancer cells through AMPK signaling pathway. Anal Cell Pathol 2022:8708202

    Google Scholar 

  • Weaver BA, Cleveland DW (2005) Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell 8(1):7–12

    CAS  PubMed  Google Scholar 

  • Wei Z et al (2019) miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury. Life Sci 232:116632

    CAS  PubMed  Google Scholar 

  • Whiteside TL (2018) Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Seminars in immunology. Elsevier

    Google Scholar 

  • Willis GR, Kourembanas S, Mitsialis SA (2017) Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Front Cardiovasc Med 4:63

    PubMed  PubMed Central  Google Scholar 

  • Wu S et al (2013) Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS ONE 8(4):e61366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H et al (2019) Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. Int Immunopharmacol 68:204–212

    CAS  PubMed  Google Scholar 

  • Xavier CP et al (2022) The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updates 62:100833

    CAS  Google Scholar 

  • Xiao X, Wu Z-C, Chou K-C (2011) A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS ONE 6(6):e20592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie C et al (2019a) Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration. Mol Cell Biochem 458(1):11–26

    CAS  PubMed  Google Scholar 

  • Xin H et al (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H et al (2019a) Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via Wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res Ther 10(1):1–14

    Google Scholar 

  • Xu Y et al (2019b) microRNA-16-5p-containing exosomes derived from bone marrow-derived mesenchymal stem cells inhibit proliferation, migration, and invasion, while promoting apoptosis of colorectal cancer cells by downregulating ITGA2. J Cell Physiol 234(11):21380–21394

    CAS  PubMed  Google Scholar 

  • Xu Y et al (2021) Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-451a represses epithelial–mesenchymal transition of hepatocellular carcinoma cells by inhibiting ADAM10. RNA Biol 18(10):1408–1423

    CAS  PubMed  Google Scholar 

  • Xunian Z, Kalluri R (2020) Biology and therapeutic potential of mesenchymal stem cell-derived exosomes. Cancer Sci 111(9):3100–3110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yakubovich E, Polischouk A, Evtushenko V (2022) Principles and problems of exosome isolation from biological fluids. Biochem (moscow), Suppl Ser A Membr Cell Biol 16(2):115–126

    CAS  Google Scholar 

  • Yakushov S et al (2022) Identification of factors driving doxorubicin-resistant ewing tumor cells to survival. Cancers 14(22):5498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita T et al (2016) Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. Eur J Pharm Biopharm 98:1–8

    CAS  PubMed  Google Scholar 

  • Yáñez-Mó M et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4(1):27066

    PubMed  Google Scholar 

  • Yang Y et al (2015a) Acquisition of new tumor cell properties by MSC-derived exosomes. Int J Oncol 47(1):244–252

    CAS  PubMed  Google Scholar 

  • Yang Y, Otte A, Hass R (2015b) Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines. Stem Cells Dev 24(10):1205–1222

    CAS  PubMed  Google Scholar 

  • Yang C et al (2020) Autologous exosome transfer: a new personalised treatment concept to prevent colitis in a murine model. J Crohns Colitis 14(6):841–855

    PubMed  Google Scholar 

  • Yang Y et al (2021) Calumenin contributes to epithelial-mesenchymal transition and predicts poor survival in glioma. Transl Neurosci 12(1):67–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H et al (2022) Exosomes in the tumor microenvironment of sarcoma: From biological functions to clinical applications. J Nanobiotechnol 20(1):1–18

    CAS  Google Scholar 

  • Ying H et al (2020) Extracellular vesicles carrying miR-193a derived from mesenchymal stem cells impede cell proliferation, migration and invasion of colon cancer by downregulating FAK. Exp Cell Res 394(2):112144

    CAS  PubMed  Google Scholar 

  • You Y, Ikezu T (2019) Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol Dis 130:104512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yousafzai NA et al (2018) Exosome mediated multidrug resistance in cancer. Am J Cancer Res 8(11):2210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S et al (2023) Mesenchymal stromal cells-derived extracellular vesicles as potential treatments for osteoarthritis. Pharmaceutics 15(7):1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yue R et al (2022) Mesenchymal stem cell-derived exosomal microRNA-182-5p alleviates myocardial ischemia/reperfusion injury by targeting GSDMD in mice. Cell Death Discov 8(1):1–14

    Google Scholar 

  • Zakaria N, Yahaya BH (2020) Adipose-derived mesenchymal stem cells promote growth and migration of lung adenocarcinoma cancer cells. Cancer biology and advances in treatment. Springer

    Google Scholar 

  • Zhang L, Yu D (2019) Exosomes in cancer development, metastasis, and immunity. Biochim Biophys Acta (BBA) Rev Cancer 1871(2):455–468

    CAS  Google Scholar 

  • Zhang B et al (2014) Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 23(11):1233–1244

    CAS  PubMed  Google Scholar 

  • Zhang Y et al (2016) Mesenchymal stromal cell therapy in ischemic stroke. J Neurorestoratol 4(1):79–83

    Google Scholar 

  • Zhang X et al (2017) Mesenchymal stem cell-derived extracellular vesicles: roles in tumor growth, progression, and drug resistance. Stem Cells Int 2017:1758139

    PubMed  PubMed Central  Google Scholar 

  • Zhang H-D et al (2018) Exosome: a novel mediator in drug resistance of cancer cells. Epigenomics 10(11):1499–1509

    CAS  PubMed  Google Scholar 

  • Zhang F et al (2020) Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Mol Cell Probes 51:101513

    CAS  PubMed  Google Scholar 

  • Zhang X et al (2020) Exosomes from bone marrow microenvironment-derived mesenchymal stem cells affect CML cells growth and promote drug resistance to tyrosine kinase inhibitors. Stem Cells Int 2020:8890201

    PubMed  PubMed Central  Google Scholar 

  • Zhang F et al (2022) Mesenchymal stem cell-derived exosome: a tumor regulator and carrier for targeted tumor therapy. Cancer Lett 526:29–40

    CAS  PubMed  Google Scholar 

  • Zhao J et al (2019) Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res 115(7):1205–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao R et al (2020) Dual role of MSC-derived exosomes in tumor development. Stem Cells Int 2020:8844730

    PubMed  PubMed Central  Google Scholar 

  • Zhao L et al (2021) The relationship between mesenchymal stem cells and tumor dormancy. Front Cell Dev Biol 9:731393

    PubMed  PubMed Central  Google Scholar 

  • Zhou W et al (2021) Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials 268:120546

    CAS  PubMed  Google Scholar 

  • Zhou M et al (2022) Apoptotic bodies for advanced drug delivery and therapy. J Control Release 351:394–406

    CAS  PubMed  Google Scholar 

  • Zhu W et al (2012a) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315(1):28–37

    CAS  PubMed  Google Scholar 

  • Zhuang W-Z et al (2021) Mesenchymal stem/stromal cell-based therapy: mechanism, systemic safety and biodistribution for precision clinical applications. J Biomed Sci 28(1):1–38

    Google Scholar 

Download references

Funding

This study is supported by University of Tabriz and National Institute of Genetic Engineering and Biotechnology (NIGEB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khalaj-Kondori.

Ethics declarations

Conflict of interest

All authors read and approved the manuscript and declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahangiri, B., Khalaj-Kondori, M., Asadollahi, E. et al. Dual impacts of mesenchymal stem cell-derived exosomes on cancer cells: unravelling complex interactions. J. Cell Commun. Signal. 17, 1229–1247 (2023). https://doi.org/10.1007/s12079-023-00794-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-023-00794-3

Keywords

Navigation