Skip to main content

Advertisement

Log in

The matricellular protein CCN6 differentially regulates mitochondrial metabolism in normal epithelium and in metaplastic breast carcinomas

  • Research Article
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Metaplastic breast carcinoma (MBC) is an aggressive subtype of triple negative breast cancer with undefined precursors, limited response to chemotherapy, and frequent distant metastasis. Our laboratory has reported that CCN6/WISP3, a secreted protein that regulates growth factor signaling, is downregulated in over 85% of MBCs. Through generation of a mammary epithelial cell-specific Ccn6 knockout mouse model (MMTV-cre;Ccn6fl/fl) we have demonstrated that CCN6 is a tumor suppressor for MBC; MMTV-cre;Ccn6fl/fl mice develop tumors recapitulating the histopathology and proteogenomic landscape of human MBC, but the mechanisms need further investigation. In this study, we report that preneoplastic mammary glands of 8-week-old MMTV-Cre;Ccn6fl/fl female mice show significant downregulation of mitochondrial respiratory chain genes compared to controls, which are further downregulated in MBCs of MMTV-Cre;Ccn6fl/fl mice and humans. We found that CCN6 downregulation in non-tumorigenic breast cells reduces mitochondrial respiration and increases resistance to stress-induced apoptosis compared to controls. Intracellular ectopic CCN6 protein localizes to the mitochondria in MDA-MB-231 mesenchymal-like breast cancer cells, increases mitochondrial respiration and generation of reactive oxygen species, and reverses doxorubicin resistance of MBC cells. Our data highlight a novel function of CCN6 in the regulation of redox states in preneoplastic progression and suggest potential preventative and treatment strategies against MBC based on CCN6 upregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamo B, Anders CK (2011) Stratifying triple-negative breast cancer: which definition(s) to use? Breast Cancer Res 13:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae SY, Lee SK, Koo MY, Hur SM, Choi MY, Cho DH, Kim S, Choe JH, Lee JE, Kim JH, Kim JS, Nam SJ, Yang JH (2011) The prognoses of metaplastic breast cancer patients compared to those of triple-negative breast cancer patients. Breast Cancer Res Treat 126:471–478

    Article  CAS  PubMed  Google Scholar 

  • Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, Mills GB, Lau CC, Brown PH (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21:1688–1698

    Article  CAS  PubMed  Google Scholar 

  • Cimino-Mathews A, Verma S, Figueroa-Magalhaes MC, Jeter SC, Zhang Z, Argani P, Stearns V, Connolly RM (2016) A Clinicopathologic analysis of 45 patients with metaplastic breast carcinoma. Am J Clin Pathol 145:365–372

    Article  CAS  PubMed  Google Scholar 

  • Djomehri SI, Gonzalez ME, da Veiga Leprevost F, Tekula SR, Chang HY, White MJ, Cimino-Mathews A, Burman B, Basrur V, Argani P, Nesvizhskii AI, Kleer CG (2020) Quantitative proteomic landscape of metaplastic breast carcinoma pathological subtypes and their relationship to triple-negative tumors. Nat Commun 11:1723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Zein D, Hughes M, Kumar S, Peng X, Oyasiji T, Jabbour H, Khoury T (2017) Metaplastic carcinoma of the breast is more aggressive than triple-negative breast cancer: a study from a single institution and review of literature. Clin Breast Cancer 17:382–391

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans KW, Yuca E, Scott SS, Zhao M, Paez Arango N, Cruz Pico CX, Saridogan T, Shariati M, Class CA, Bristow CA, Vellano CP, Zheng X, Gonzalez-Angulo AM, Su X, Tapia C, Chen K, Akcakanat A, Lim B, Tripathy D, Yap TA, Di Francesco ME, Draetta GF, Jones P, Heffernan TP, Marszalek JR, Meric-Bernstam F (2021) Oxidative phosphorylation is a metabolic vulnerability in chemotherapy-resistant triple negative breast cancer. Cancer Res 81(21):5572–5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian CJ, Zalles C, Kamel S, Zeiger S, Simon C, Kimler BF (1997) Breast cytology and biomarkers obtained by random fine needle aspiration: use in risk assessment and early chemoprevention trials. J Cell Biochem Suppl 28–29:101–110

    Article  PubMed  Google Scholar 

  • Gyorffy B (2021) Survival analysis across the entire transcriptome identifies biomarkers with the highest prognostic power in breast cancer. Comput Struct Biotechnol J 19:4101–4109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, Fridlyand J, Sahin A, Agarwal R, Joy C, Liu W, Stivers D, Baggerly K, Carey M, Lluch A, Monteagudo C, He X, Weigman V, Fan C, Palazzo J, Hortobagyi GN, Nolden LK, Wang NJ, Valero V, Gray JW, Perou CM, Mills GB (2009) Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69:4116–4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Gonzalez ME, Toy KA, Banerjee M, Kleer CG (2010) Blockade of CCN6 (WISP3) activates growth factor-independent survival and resistance to anoikis in human mammary epithelial cells. Cancer Res 70:3340–3350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Martin EE, Burman B, Gonzalez ME, Kleer CG (2016) The matricellular protein CCN6 (WISP3) decreases Notch1 and suppresses breast cancer initiating cells. Oncotarget 7:25180–25193

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Zhang Y, Varambally S, Chinnaiyan AM, Banerjee M, Merajver SD, Kleer CG (2008) Inhibition of CCN6 (Wnt-1-induced signaling protein 3) down-regulates E-cadherin in the breast epithelium through induction of snail and ZEB1. Am J Pathol 172:893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurvitz JR, Suwairi WM, Van Hul W, El-Shanti H, Superti-Furga A, Roudier J, Holderbaum D, Pauli RM, Herd JK, Van Hul EV, Rezai-Delui H, Legius E, Le Merrer M, Al-Alami J, Bahabri SA, Warman ML (1999) Mutations in the CCN gene family member WISP3 cause progressive pseudorheumatoid dysplasia. Nat Genet 23:94–98

    Article  CAS  PubMed  Google Scholar 

  • Huvos AG, Lucas JC Jr, Foote FW Jr (1973) Metaplastic breast carcinoma. Rare form of mammary cancer. N Y State J Med 73:1078–1082

    CAS  PubMed  Google Scholar 

  • Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA (2018) Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells 7:21

    Article  PubMed Central  CAS  Google Scholar 

  • Jun JI, Lau LF (2011) Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets. Nat Rev Drug Discov 10:945–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung SY, Kim HY, Nam BH, Min SY, Lee SJ, Park C, Kwon Y, Kim EA, Ko KL, Shin KH, Lee KS, Park IH, Lee S, Kim SW, Kang HS, Ro J (2010) Worse prognosis of metaplastic breast cancer patients than other patients with triple-negative breast cancer. Breast Cancer Res Treat 120:627–637

    Article  PubMed  Google Scholar 

  • Kanehisa M (2002) The KEGG database. Nov Found Symp 247:91–101 (discussion 101-103, 119-128, 244-152)

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucl Acids Res 30:42–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleer CG, Zhang Y, Pan Q, Merajver SD (2004) WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia 6:179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleer CG, Zhang Y, Pan Q, van Golen KL, Wu ZF, Livant D, Merajver SD (2002) WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene 21:3172–3180

    Article  CAS  PubMed  Google Scholar 

  • Lee BWL, Ghode P, Ong DST (2019) Redox regulation of cell state and fate. Redox Biol 25:101056

    Article  CAS  PubMed  Google Scholar 

  • Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121:2750–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lester TR, Hunt KK, Nayeemuddin KM, Bassett RL Jr, Gonzalez-Angulo AM, Feig BW, Huo L, Rourke LL, Davis WG, Valero V, Gilcrease MZ (2012) Metaplastic sarcomatoid carcinoma of the breast appears more aggressive than other triple receptor-negative breast cancers. Breast Cancer Res Treat 131:41–48

    Article  CAS  PubMed  Google Scholar 

  • Li D, Fu Z, Chen R, Zhao X, Zhou Y, Zeng B, Yu M, Zhou Q, Lin Q, Gao W, Ye H, Zhou J, Li Z, Liu Y, Chen R (2015) Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy. Oncotarget 6:31151–31163

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenzatti G, Huang W, Pal A, Cabanillas AM, Kleer CG (2011) CCN6 (WISP3) decreases ZEB1-mediated EMT and invasion by attenuation of IGF-1 receptor signaling in breast cancer. J Cell Sci 124:1752–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, Conley S, Fath MA, Davis A, Gheordunescu E, Wang Y, Harouaka R, Lozier A, Triner D, McDermott S, Merajver SD, Luker GD, Spitz DR, Wicha MS (2018) Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab 28:69–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahendralingam MJ, Kim H, McCloskey CW, Aliar K, Casey AE, Tharmapalan P, Pellacani D, Ignatchenko V, Garcia-Valero M, Palomero L, Sinha A, Cruickshank J, Shetty R, Vellanki RN, Koritzinsky M, Stambolic V, Alam M, Schimmer AD, Berman HK, Eaves CJ, Pujana MA, Kislinger T, Khokha R (2021) Mammary epithelial cells have lineage-rooted metabolic identities. Nat Metab 3:665–681

    Article  CAS  PubMed  Google Scholar 

  • Marchetti P, Fovez Q, Germain N, Khamari R, Kluza J (2020) Mitochondrial spare respiratory capacity: Mechanisms, regulation, and significance in non-transformed and cancer cells. FASEB J 34:13106–13124

    Article  CAS  PubMed  Google Scholar 

  • Martin EE, Huang W, Anwar T, Arellano-Garcia C, Burman B, Guan JL, Gonzalez ME, Kleer CG (2017) MMTV-cre;Ccn6 knockout mice develop tumors recapitulating human metaplastic breast carcinomas. Oncogene 36:2275–2285

    Article  CAS  PubMed  Google Scholar 

  • McMullen ER, Gonzalez ME, Skala SL, Tran M, Thomas D, Djomehri SI, Burman B, Kidwell KM, Kleer CG (2018) CCN6 regulates IGF2BP2 and HMGA2 signaling in metaplastic carcinomas of the breast. Breast Cancer Res Treat 172:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munakata K, Uemura M, Tanaka S, Kawai K, Kitahara T, Miyo M, Kano Y, Nishikawa S, Fukusumi T, Takahashi Y, Hata T, Nishimura J, Takemasa I, Mizushima T, Ikenaga M, Kato T, Murata K, Carethers JM, Yamamoto H, Doki Y, Mori M (2016) Cancer stem-like properties in colorectal cancer cells with low proteasome activity. Clin Cancer Res 22:5277–5286

    Article  CAS  PubMed  Google Scholar 

  • Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

    Article  CAS  PubMed  Google Scholar 

  • Oberman HA (1987) Metaplastic carcinoma of the breast. A clinicopathologic study of 29 patients. Am J Surg Pathol 11:918–929

    Article  CAS  PubMed  Google Scholar 

  • Oliva CR, Moellering DR, Gillespie GY, Griguer CE (2011) Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS One 6:e24665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padhan DK, Sengupta A, Patra M, Ganguly A, Mahata SK, Sen M (2020) CCN6 regulates mitochondrial respiratory complex assembly and activity. FASEB J 34:12163–12176

    Article  CAS  PubMed  Google Scholar 

  • Pal A, Huang W, Li X, Toy KA, Nikolovska-Coleska Z, Kleer CG (2012a) CCN6 modulates BMP signaling via the Smad-independent TAK1/p38 pathway, acting to suppress metastasis of breast cancer. Cancer Res 72:4818–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal A, Huang W, Toy KA, Kleer CG (2012b) CCN6 knockdown disrupts acinar organization of breast cells in three-dimensional cultures through up-regulation of type III TGF-beta receptor. Neoplasia 14:1067–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra M, Mahata SK, Padhan DK, Sen M (2016) CCN6 regulates mitochondrial function. J Cell Sci 129:2841–2851

    CAS  PubMed  Google Scholar 

  • Pelicano H, Zhang W, Liu J, Hammoudi N, Dai J, Xu RH, Pusztai L, Huang P (2014) Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential. Breast Cancer Res 16:434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perbal B (2004) CCN proteins: multifunctional signalling regulators. Lancet 363:62–64

    Article  CAS  PubMed  Google Scholar 

  • Perbal B (2006) The CCN3 protein and cancer. Adv Exp Med Biol 587:23–40

    Article  CAS  PubMed  Google Scholar 

  • Perbal B, Takigawa M (2005) CCN proteins: a new family of cell growth and differentiation regulators. World Scientific Publishers, London. https://doi.org/10.1142/9781860946899_0001. pp 1–18

  • Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A (2020) ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  • Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  • Reddy TP, Rosato RR, Li X, Moulder S, Piwnica-Worms H, Chang JC (2020) A comprehensive overview of metaplastic breast cancer: clinical features and molecular aberrations. Breast Cancer Res 22:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Rungta S, Kleer CG (2012) Metaplastic carcinomas of the breast: diagnostic challenges and new translational insights. Arch Pathol Lab Med 136:896–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengupta A, Padhan DK, Ganguly A, Sen M (2021) Ccn6 Is required for mitochondrial integrity and skeletal muscle function in zebrafish. Front Cell Dev Biol 9:627409

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R (2009) A novel signaling pathway impact analysis. Bioinformatics 25:75–82

    Article  CAS  PubMed  Google Scholar 

  • Tran MN, Kleer CG (2018) Matricellular CCN6 (WISP3) protein: a tumor suppressor for mammary metaplastic carcinomas. J Cell Commun Signal 12:13–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Washington C, Dalbegue F, Abreo F, Taubenberger JK, Lichy JH (2000) Loss of heterozygosity in fibrocystic change of the breast: genetic relationship between benign proliferative lesions and associated carcinomas. Am J Pathol 157:323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong W, Brogi E, Reis-Filho JS, Plitas G, Robson M, Norton L, Morrow M, Wen HY (2021) Poor response to neoadjuvant chemotherapy in metaplastic breast carcinoma. NPJ Breast Cancer 7:96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Toy KA, Kleer CG (2012) Metaplastic breast carcinomas are enriched in markers of tumor-initiating cells and epithelial to mesenchymal transition. Mod Pathol 25:178–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health/National Cancer Institute R01 CA107469 (C.G.K.), R01 CA125577 (C.G.K.) and the University of Michigan Rogel Cancer Center Support Grant (P30 CA46592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celina G. Kleer.

Ethics declarations

Conflict of interest

The authors declare that no conflicts exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1090 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, M., Leflein, S.A., Gonzalez, M.E. et al. The matricellular protein CCN6 differentially regulates mitochondrial metabolism in normal epithelium and in metaplastic breast carcinomas. J. Cell Commun. Signal. 16, 433–445 (2022). https://doi.org/10.1007/s12079-021-00657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-021-00657-9

Keywords

Navigation