Skip to main content
Log in

1,25(OH)2 vitamin D3 signalling on immature rat Sertoli cells: gamma-glutamyl transpeptidase and glucose metabolism

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

1α,25-Dihydroxyvitamin D3 (1,25-D3) is critical for the maintenance of normal male reproduction since reduced fertility is observed in vitamin D-deficient rats. Gamma-glutamyl transpeptidase (GGT) is a membrane-bound enzyme that is localized on Sertoli cells and catalyses the transfer of the gamma-glutamyl residues to an amino acid or peptide acceptor. Sertoli cells are also responsible for providing nutrients, as lactate, to the development of germ cells. The aim of this study was to investigate the effect and the mechanism of action of 1,25-D3 on GGT on Sertoli cell functions from 30-day-old immature rat testis. Results demonstrated that 1,25-D3 stimulates GGT activity at Sertoli cells plasma membrane through a PKA-dependent mechanism of action, which was not dependent of active de novo protein synthesis. The hormone increases glucose uptake, as well as lactate production and release by Sertoli cells without altering the reactive oxygen species (ROS) generation. In addition, 1,25-D3 did not change reduced glutathione (GSH) amount or oxygen consumption, and diminished Sertoli cell death. These findings demonstrate that 1,25-D3 stimulatory effect on GGT activity, glucose uptake, LDH activity and lactate production seem to be an important contribution of Sertoli cells for germ cells nutrition and for a full and active ongoing spermatogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BDC:

Bisdemethoxycurcumin

CM:

Curcumin

1,25-D3 :

1α,25-dihydroxyvitamin D3

14C–DG:

[U-14C]-2-deoxy-D-glucose

GGT:

Gamma-glutamyl transpeptidase

KRb:

Krebs Ringer-bicarbonate buffer

LDH:

Lactate dehydrogenase

GSH:

Reduced gluthatione

VDR:

Vitamin D receptor

VDR-AP:

Vitamin D alternative pocket

VDRnuc:

Vitamin D nuclear receptor

VDRmem:

Vitamin D membrane receptor

CH:

Cycloheximide

ST:

Stearoylcarnitine chloride

References

  • Aly HAA, Khafagy RM (2011) 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cytotoxicity accompanied by oxidative stress in rat Sertoli cells: possible role of mitochondrial fractions of Sertoli cells. Toxicol Appl Pharmacol 252:273–280. doi:10.1016/j.taap.2011.02.019

    Article  CAS  PubMed  Google Scholar 

  • Aprioku JS (2013) Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J Reprod Infertil 14:158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajpai M, Gupta G, Setty BS (1998) Changes in carbohydrate metabolism of testicular germ cells during meiosis in the rat. Eur J Endocrinol 138:322–327

    Article  CAS  PubMed  Google Scholar 

  • Berger AL, Randak CO, Ostedgaard LS et al (2005) Curcumin stimulates cystic fibrosis Transmembrane conductance regulator Cl- Channel activity. J Biol Chem 280:5221–5226. doi:10.1074/jbc.M412972200

    Article  CAS  PubMed  Google Scholar 

  • Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  • Blomberg Jensen M, Nielsen JE, Jorgensen A et al (2010) Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum Reprod 25:1303–1311. doi:10.1093/humrep/deq024

    Article  CAS  PubMed  Google Scholar 

  • Bouillon R, Okamura WH, Norman AW (1995) Structure-function relationships in the vitamin D endocrine system. Endocr Rev 16:200–257

    CAS  PubMed  Google Scholar 

  • Cardoso SM, Pereira C, Oliveira R (1999) Mitochondrial function is differentially affected upon oxidative stress. Free Radic Biol Med 26:3–13

    Article  CAS  PubMed  Google Scholar 

  • Caston LA, Sanborn BM (1988) Regulation of testicular and Sertoli cell gamma-glutamyl transpeptidase by follicle-stimulating hormone. Biol Reprod 38:109–113

    Article  CAS  PubMed  Google Scholar 

  • Cazarolli LH, Folador P, Moresco HH et al (2009) Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside on 14C-glucose uptake. Chem Biol Interact 179:407–412. doi:10.1016/j.cbi.2008.11.012

    Article  CAS  PubMed  Google Scholar 

  • de Liz Oliveira Cavalli VL, Cattani D, Heinz Rieg CE et al (2013) Roundup disrupts male reproductive functions by triggering calcium-mediated cell death in rat testis and Sertoli cells. Free Radic Biol Med 65:335–346. doi:10.1016/j.freeradbiomed.2013.06.043

    Article  PubMed  Google Scholar 

  • de Paula Martins R, Glaser V, da Luz SD et al (2013) Platelet oxygen consumption as a peripheral blood marker of brain energetics in a mouse model of severe neurotoxicity. J Bioenerg Biomembr 45:449–457. doi:10.1007/s10863-013-9499-7

    Article  PubMed  Google Scholar 

  • Dorrington JH, Roller NF, Fritz IB (1975) Effects of follicle-stimulating hormone on cultures of Sertoli cell preparations. Mol Cell Endocrinol 3:57–70

    Article  CAS  PubMed  Google Scholar 

  • Galardo MN, Riera MF, Pellizzari EH et al (2008) Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1β, and bFGF at two different time-points in pubertal development. Cell Tissue Res 334:295–304. doi:10.1007/s00441-008-0656-y

    Article  CAS  PubMed  Google Scholar 

  • Galdieri M, Ziparo E, Palombi F et al (1981) Pure Sertoli cell cultures: a new model for the study of somatic-germ cell interactions. J Androl 2:249–254. doi:10.1002/j.1939-4640.1981.tb00625.x

    Article  CAS  Google Scholar 

  • Grootegoed JA, Oonk RB, Jansen R, Van der Molen HJ (1986) Metabolism of radiolabelled energy-yielding substrates by rat Sertoli cells. J Reprod Fertil 77:109–118

    Article  CAS  PubMed  Google Scholar 

  • Habib FK, Maddy SQ, Gelly KJ (1990) Characterisation of receptors for 1,25-dihydroxyvitamin D3 in the human testis. J Steroid Biochem 35:195–199

    Article  CAS  PubMed  Google Scholar 

  • Harding CO, Williams P, Wagner E et al (1997) Mice with genetic γ-glutamyl transpeptidase deficiency exhibit glutathionuria, severe growth failure, reduced life spans, and infertility. J Biol Chem 272:12560–12567

    Article  CAS  PubMed  Google Scholar 

  • Hatefi Y, Haavik AG, Griffiths DE (1962) Studies on the electron transfer system XL. Preparation and properties of mitochondrial DPNH-coenzyme Q reductase. J Biol Chem 237:1676–1680

    CAS  PubMed  Google Scholar 

  • Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30:445–600. doi:10.3109/10409239509083491

    Article  CAS  PubMed  Google Scholar 

  • Hodgen GD, Sherins RJ (1973) Enzymes as markers of testicular growth and development in the rat. Endocrinology 93:985–989. doi:10.1210/endo-93-4-985

    Article  CAS  PubMed  Google Scholar 

  • Hutchesson A, Preece MA, Gray G, Green A (1997) Measurement of lactate in cerebrospinal fluid in investigation of inherited metabolic disease. Clin Chem 43:158–161

    CAS  PubMed  Google Scholar 

  • Ito R, Ihara H, Okada T, Ikeda Y (2014) 1α,25-dihydroxyvitamin D3 enhances γ-glutamyl transpeptidase activity in LLC-PK1 porcine kidney epithelial cells. Mol Med Rep. doi:10.3892/mmr.2014.2436

    PubMed Central  Google Scholar 

  • Jain SK, Micinski D (2013) Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes. Biochem Biophys Res Commun 437:7–11. doi:10.1016/j.bbrc.2013.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MB (2014) Vitamin D and male reproduction. Nat Rev Endocrinol 10:175–186. doi:10.1038/nrendo.2013.262

    Article  CAS  Google Scholar 

  • Johnson JA, Grande JP, Roche PC, Kumar R (1996) Immunohistochemical detection and distribution of the 1,25-dihydroxyvitamin D3 receptor in rat reproductive tissues. Histochem Cell Biol 105:7–15

    Article  CAS  PubMed  Google Scholar 

  • Jurutka PW, Bartik L, Whitfield GK et al (2007) Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J Bone Miner Res 22:V2–V10. doi:10.1359/jbmr.07s216

    Article  CAS  PubMed  Google Scholar 

  • Kinuta K, Tanaka H, Moriwake T et al (2000) Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads. Endocrinology 141:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    Article  CAS  PubMed  Google Scholar 

  • Kumar TR, Wiseman AL, Kala G et al (2000) Reproductive defects in γ-glutamyl transpeptidase-deficient mice 1. Endocrinology 141:4270–4277

    Article  CAS  PubMed  Google Scholar 

  • Kwiecinski GG, Petrie GI, DeLuca HF (1989) Vitamin D is necessary for reproductive functions of the male rat. J Nutr 119:741–744

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lu C, Steinberger A (1977) Gamma-glutamyl transpeptidase activity in the developing rat testis. Enzyme localization in isolated cell types. Biol Reprod 17:84–88

    Article  CAS  PubMed  Google Scholar 

  • Marchionatti AM, Picotto G, Narvaez CJ et al (2009) Antiproliferative action of menadione and 1,25(OH)2D3 on breast cancer cells. J Steroid Biochem Mol Biol 113:227–232. doi:10.1016/j.jsbmb.2009.01.004

    Article  CAS  PubMed  Google Scholar 

  • Mareš V, Malík R, Lisá V, Šedo A (2005) Up-regulation of gamma-glutamyl transpeptidase (GGT) activity in growth perturbed C6 astrocytes. Mol Brain Res 136:75–80. doi:10.1016/j.molbrainres.2005.01.007

    Article  PubMed  Google Scholar 

  • Masoumi A, Goldenson B, Ghirmai S et al (2009) 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer’s disease patients. J Alzheimers Dis JAD 17:703–717. doi:10.3233/JAD-2009-1080

    Article  CAS  PubMed  Google Scholar 

  • Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263:17205–17208

    CAS  PubMed  Google Scholar 

  • Menegaz D, Rosso A, Royer C et al (2009) Role of 1α,25(OH)2 vitamin D3 on α-[1-14C]MeAIB accumulation in immature rat testis. Steroids 74:264–269. doi:10.1016/j.steroids.2008.11.015

    Article  CAS  PubMed  Google Scholar 

  • Menegaz D, Barrientos-Duran A, Kline A et al (2010) 1α,25(OH)2-vitamin D3 stimulation of secretion via chloride channel activation in Sertoli cells. J Steroid Biochem Mol Biol 119:127–134. doi:10.1016/j.jsbmb.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  • Menegaz D, Mizwicki MT, Barrientos-Duran A et al (2011) Vitamin D receptor (VDR) regulation of voltage-gated chloride channels by ligands preferring a VDR-alternative pocket (VDR-AP). Mol Endocrinol 25:1289–1300. doi:10.1210/me.2010-0442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meroni S, Cánepa D, Pellizzari E et al (1997) Regulation of γ-glutamyl transpeptidase activity by Ca2 + −and protein kinase C-dependent pathways in Sertoli cells. Int J Androl 20:189–194

  • Mizwicki MT, Norman AW (2009) The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Sci Signal 2:re4. doi:10.1126/scisignal.275re4

    Article  PubMed  Google Scholar 

  • Nehar D, Mauduit C, Boussouar F, Benahmed M (1997) Tumor necrosis factor-α-stimulated lactate production is linked to lactate dehydrogenase a expression and activity increase in porcine cultured Sertoli cells 1. Endocrinology 138:1964–1971

    Article  CAS  PubMed  Google Scholar 

  • Norman AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 88:491S–499S

    Article  CAS  PubMed  Google Scholar 

  • Norman AW, Roberts PA (1980) Steroid competition assay for determination of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D. Methods Enzymol 67:473–478

    Article  CAS  PubMed  Google Scholar 

  • Norman AW, Ishizuka S, Okamura WH (2001a) Ligands for the vitamin D endocrine system: different shapes function as agonists and antagonists for genomic and rapid response receptors or as a ligand for the plasma vitamin D binding protein. J Steroid Biochem Mol Biol 76:49–59

    Article  CAS  PubMed  Google Scholar 

  • Norman AW, Mena FR, Silva B (2001b) Structure function studies: identification of vitamin D analogs for the ligand-binding domains of important proteins in the vitamin D-endocrine system. Rev Endocr Metab Disord 2:229–238

    Article  CAS  PubMed  Google Scholar 

  • Norman AW, Bishop JE, Bula CM et al (2002) Molecular tools for study of genomic and rapid signal transduction responses initiated by 1α, 25 (OH) 2-vitamin D 3. Steroids 67:457–466

    Article  CAS  PubMed  Google Scholar 

  • Orlowski M, Meister A (1963) Gamma-GLUTAMYL-P-NITROANILIDE: A New Convenient Substrate for determination and study of L- and D-gamma-GLUTAMYLTRANSPEPTIDASE Activities. Biochim Biophys Acta 73:679–681

    Article  CAS  PubMed  Google Scholar 

  • Pandur S, Ravuri C, Moens U, Huseby N-E (2014) Combined incubation of colon carcinoma cells with phorbol ester and mitochondrial uncoupling agents results in synergic elevated reactive oxygen species levels and increased γ-glutamyltransferase expression. Mol Cell Biochem 388:149–156. doi:10.1007/s11010-013-1906-1

    Article  CAS  PubMed  Google Scholar 

  • Prelot M, Do TX, Planchenault P, Girault A (1990) In vitro effects of 1,25-dihydroxycholecalciferol on alkaline phosphatase and gamma-glutamyltransferase activity in hypophysectomized rats. Arch Int Physiol Biochim 98:59–66

    CAS  PubMed  Google Scholar 

  • Prelot M, Do TX, Giraul A, Thuillier A (1991) In vitro effects of 24R,25-dihydroxyvitamin D3 on alkaline phosphatase and gamma-glutamyltransferase in the kidney of hypophysectomized rats. Arch Int Physiol Biochim Biophys 99:269–273

    CAS  PubMed  Google Scholar 

  • Rato L, Alves MG, Socorro S et al (2012) Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9:330–338. doi:10.1038/nrurol.2012.77

    Article  CAS  PubMed  Google Scholar 

  • Ravuri C, Svineng G, Pankiv S, Huseby N-E (2011) Endogenous production of reactive oxygen species by the NADPH oxidase complexes is a determinant of γ-glutamyltransferase expression. Free Radic Res 45:600–610. doi:10.3109/10715762.2011.564164

    Article  CAS  PubMed  Google Scholar 

  • Remor AP, de Matos FJ, Ghisoni K et al (2011) Differential effects of insulin on peripheral diabetes-related changes in mitochondrial bioenergetics: involvement of advanced glycosylated end products. Biochim Biophys Acta (BBA) - Mol Basis Dis 1812:1460–1471. doi:10.1016/j.bbadis.2011.06.017

    Article  CAS  Google Scholar 

  • Riera MF, Meroni SB, Gómez GE et al (2001) Regulation of lactate production by FSH, IL1β, and TNFα in rat Sertoli cells. Gen Comp Endocrinol 122:88–97. doi:10.1006/gcen.2001.7619

    Article  CAS  PubMed  Google Scholar 

  • Robinson R, Fritz IB (1981) Metabolism of glucose by Sertoli cells in culture. Biol Reprod 24:1032–1041

    Article  CAS  PubMed  Google Scholar 

  • Rosso A, Pansera M, Zamoner A et al (2012) 1α,25(OH)2-vitamin D3 stimulates rapid plasma membrane calcium influx via MAPK activation in immature rat Sertoli cells. Biochimie 94:146–154. doi:10.1016/j.biochi.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  • Schteingart HF, Cigorraga S, León M et al (1988) Hormonal regulation of rat testicular γ-glutamyl-transpeptidase “in vivo” and “in vitro”/die hormonelle regulation von testikulärer γ-glutamyl-transpeptidase bei Ratten “in vivo” und “in vitro”. Andrologia 20:351–359

    Article  CAS  PubMed  Google Scholar 

  • Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784

    Article  CAS  PubMed  Google Scholar 

  • Silva FRMB (2014) Functional importance of 1α,25(OH)2-vitamin D3 and the identification of its nongenomic and genomic signaling pathways in the testis. Adv Androl 2014:1–10. doi:10.1155/2014/808906

    Article  Google Scholar 

  • Tate SS, Meister A (1981) Gamma-glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem 39:357–368

    Article  CAS  PubMed  Google Scholar 

  • Tindall DJ, Rowley DR, Murthy L et al (1985) Structure and biochemistry of the Sertoli cell. Int Rev Cytol 94:127–149

    Article  CAS  PubMed  Google Scholar 

  • Verkman AS, Galietta LJV (2009) Chloride channels as drug targets. Nat Rev Drug Discov 8:153–171. doi:10.1038/nrd2780

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Bernard K, Li G, Kirk KL (2007) Curcumin opens cystic fibrosis Transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. J Biol Chem 282:4533–4544. doi:10.1074/jbc.M609942200

    Article  CAS  PubMed  Google Scholar 

  • Zamoner A, Barreto KP, Filho DW et al (2007) Hyperthyroidism in the developing rat testis is associated with oxidative stress and hyperphosphorylated vimentin accumulation. Mol Cell Endocrinol 267:116–126. doi:10.1016/j.mce.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  • Zamoner A, Barreto KP, Filho DW et al (2008) Propylthiouracil-induced congenital hypothyroidism upregulates vimentin phosphorylation and depletes antioxidant defenses in immature rat testis. J Mol Endocrinol 40:125–135. doi:10.1677/JME-07-0089

    Article  CAS  PubMed  Google Scholar 

  • Zanatta L, Zamoner A, Gonçalves R et al (2011a) Effect of 1α,25-dihydroxyvitamin D3 in plasma membrane targets in immature rat testis: ionic channels and gamma-glutamyl transpeptidase activity. Arch Biochem Biophys 515:46–53. doi:10.1016/j.abb.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  • Zanatta L, Zamoner A, Gonçalves R et al (2011b) 1α,25-dihydroxyvitamin D3 signaling pathways on calcium uptake in 30-day-old rat Sertoli cells. Biochemistry (Mosc) 50:10284–10292. doi:10.1021/bi201113n

    Article  CAS  Google Scholar 

  • Zanatta AP, Zanatta L, Gonçalves R et al (2013) Rapid responses to reverse T3 hormone in immature rat Sertoli cells: calcium uptake and exocytosis mediated by integrin. PLoS One 8:e77176. doi:10.1371/journal.pone.0077176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brasil (CNPq n° 472071/2013-0) and Coordenação de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de Santa Catarina (FAPESC). RG, AR and DLS are registered on the PPG-Biochemistry/UFSC. APZ is registered on the PGFAR/UFSC. FRMBS, AZ and AL are recipient of CNPq productivity fellowship. We thank LAMEB I-CCB/UFSC technicians for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Regina Mena Barreto Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, R., Zamoner, A., Zanatta, L. et al. 1,25(OH)2 vitamin D3 signalling on immature rat Sertoli cells: gamma-glutamyl transpeptidase and glucose metabolism. J. Cell Commun. Signal. 11, 233–243 (2017). https://doi.org/10.1007/s12079-016-0367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-016-0367-1

Keywords

Navigation