Skip to main content
Log in

Myopic or farsighted: bilateral trade agreements among three symmetric countries

  • Original Paper
  • Published:
Letters in Spatial and Resource Sciences Aims and scope Submit manuscript

Abstract

We examine network formation through bilateral trade agreements (BTA) among three symmetric countries. Each government decides whether to form a link or not via a BTA depending on the differential of the ex-post and ex-ante sum of real wages in the country. Setting the governmental decision in two forms, myopic and farsighted, we analyze the resulting network formation. Firstly, we find that both myopic and farsighted games achieve complete networks. Secondly, networks resulting from myopic games coincide with those resulting from farsighted games.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The results by Krugman (1991, 1993b) are derived from a model in which the formation of CUs leads to higher common external tariffs. Three blocs for minimizing welfare are considered robust, even for different values of elasticity of demand.

  2. If \(\phi =1\) at ex-ante trade negotiation, free trade, and costless transport are already achieved, and there is no need for trade negotiation. Thus we exclude this case from our analysis.

  3. For instance, since AB expresses the linkage between A and B, it is clear that \(BA=AB\).

  4. In Fig. 1, \(\overline{\delta _{1}}=\frac{4\phi ^{2}-3\phi +1}{\phi \left( 3\phi -1\right) }\) and \(\overline{\delta _{2}} =\frac{3-\sqrt{5-4\phi }}{2\phi }\) are the lower bounds above which one or more countries have no firms for any \(\phi \) when \(\#g=1\) and \(\#g=2\), respectively. These intersect each other at \(\phi =\frac{19+\sqrt{41}}{32}\fallingdotseq 0.794\).

  5. The conditions listed in Table 1 indicate that \(\lambda _{k}^{\left\{ ij\right\} }=0\) when \(\overline{\delta _{1}}\le \delta <\frac{1}{\phi }\) and \(\lambda _{j}^{\left\{ ij,jk\right\} }=1\) when \(\overline{\delta _{2}}\le \delta <\frac{1}{\phi }\), which is obtained in “Appendix B”.

  6. Preparation means calculating welfare change, discussing with stakeholders in each country or between the countries, determining their own attitude and so on.

  7. There are two well-established notions of network stability, pairwise stability and farsighted stability. The former requires that no player benefits from deleting a link and no pair of players benefit from adding a link between them, and the latter does that there is no transition path from a given network to another network through which all players are better off. Although the stability of network is out of our focus, the distinction between them comes from the same idea as that of myopic games and farsighted games. See Jackson (2008) and Mauleon and Vannetelbosch (2016).

  8. A linear equation \(Ax=b\) has a solution x if and only if \({{\text {rank}}}A={{\text {rank}}}(Ab)\).

References

  • Ago, T., Isono, I., Tabuchi, T.: Locational disadvantage of the hub. Ann. Reg. Sci. 40(4), 819–848 (2006)

    Article  Google Scholar 

  • Behrens, K., Gaigne, C., Ottaviano, G.I., Thisse, J.F.: Is remoteness a locational disadvantage? J. Econ. Geogr. 6(3), 347–368 (2006)

    Article  Google Scholar 

  • Behrens, K., Robert-Nicoud, F.: Tempora mutantur: in search of a new testament for NEG. J. Econ. Geogr. 11(2), 215–230 (2011)

    Article  Google Scholar 

  • Bhagwati, J., Panagariya, A.: Preferential trading areas and multilateralism: strangers, friends or foes? In: Bhagwati, J., Panagariya, A. (eds.) The Economics of Preferential Trading Agreements, pp. 1–78. AEI Press, Washington, D.C. (1996)

    Google Scholar 

  • Frankel, J., Stein, E., Wei, S.J.: Trading blocs and the americas: the natural, the unnatural, and the super-natural. J. Dev. Econ. 47(1), 61–95 (1995)

    Article  Google Scholar 

  • Fujita, M., Mori, T.: Frontiers of the new economic geography. Pap. Reg. Sci. 84(3), 377–405 (2005)

    Article  Google Scholar 

  • Furusawa, T., Konishi, H.: Free trade networks. J. Int. Econ. 72(2), 310–335 (2007)

    Article  Google Scholar 

  • Gaspar, J.M., Castro, S.B.S.D., Correia-da-Silva, J.: The footloose entrepreneur model with a finite number of equidistant regions. Int. J. Econ. Theory (2019). https://doi.org/10.1111/ijet.12215

  • Ikeda, K., Murota, K., Akamatsu, T., Takayama, Y.: Agglomeration patterns in a long narrow economy of a new economic geography model: analogy to a racetrack economy. Int. J. Econ. Theory 13(1), 113–145 (2017)

    Article  Google Scholar 

  • Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  • Kato, H., Okubo, T.: Market size in globalization. J. Int. Econ. 111(1), 34–60 (2018)

    Article  Google Scholar 

  • Krugman, P.: Geography and Trade. MIT Press, MA (1991)

    Google Scholar 

  • Krugman, P.: The hub effect: or, threeness in international trade. In: Neary, J.P. (ed.) Theory Policy and Dynamics in International Trade: Essays in Honor of Ronald Jones. Cambridge University Press, Cambridge (1993a)

    Google Scholar 

  • Krugman, P.: Regionalism versus multilateralism: analytical notes. In: De Meolo, J., Panagarya, A. (eds.) New Dimensions in Regional Integration. Cambridge University Press, Cambridge (1993b)

    Google Scholar 

  • Mauleon, A., Vannetelbosch, V.: Network formation games. In: Bramoullé, Y., Galeotti, A., Rogers, B.W. (eds.) The Oxford Handbook on the the Economics of Networks. Oxford University Press, Oxford (2016)

    Google Scholar 

  • Mori, T., Nishikimi, K.: Economies of transport density and industrial agglomeration. Reg. Sci. Urban Econ. 32(2), 167–200 (2002)

    Article  Google Scholar 

  • Mukunoki, H., Tachi, K.: Multilateralism and hub-and-spoke bilateralism. Rev. Int. Econ. 14(4), 658–674 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenmei Tsubota.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank Masahisa Fujita, Taiji Furusawa, Maria Ikeda, Naoto Jinji, Jing Li, Tomoya Mori, Huasheng Song, and seminar participants at Hitotsubashi University, Kyoto University, and Peking University for their helpful discussions.

Appendices

Appendix A Proofs

1.1 A.1 Proof of Lemma 1

Given any network g and any distribution of firms \(\lambda ^{g}\), the capital rent at country i, \(\pi _{i}\left( \lambda ^{g}\right) \), is expressed by

$$\begin{aligned} \pi _{i}\left( \lambda ^{g}\right) =\frac{\mu }{\sigma }Y\sum _{j}\frac{\phi _{ij}^{g}}{\Delta _{j}^{g}}{,} \end{aligned}$$

where \(\Delta _{j}^{g}=\sum _{k}\lambda _{k}^{g}\phi _{kj}^{g}\) for any j. Hence, these equations are combined into

$$\begin{aligned} \left( \begin{array}[c]{c} \pi _{A}\left( \lambda ^{g}\right) \\ \pi _{B}\left( \lambda ^{g}\right) \\ \pi _{C}\left( \lambda ^{g}\right) \end{array} \right) =\frac{\mu }{\sigma }Y\cdot \Phi ^{g}\left( \begin{array}[c]{c} \dfrac{1}{\Delta _{A}^{g}}\\ \dfrac{1}{\Delta _{B}^{g}}\\ \dfrac{1}{\Delta _{C}^{g}} \end{array} \right) {.} \end{aligned}$$

To deform the formula,

$$\begin{aligned} \Phi ^{g}\left( \begin{array}[c]{c} \dfrac{1}{\Delta _{A}^{g}}\\ \dfrac{1}{\Delta _{B}^{g}}\\ \dfrac{1}{\Delta _{C}^{g}} \end{array} \right) =\frac{\sigma }{\mu Y}\left( \begin{array}[c]{c} \pi _{A}\left( \lambda ^{g}\right) \\ \pi _{B}\left( \lambda ^{g}\right) \\ \pi _{C}\left( \lambda ^{g}\right) \end{array} \right) {,} \end{aligned}$$

which means that vector \(^{t}\left( \dfrac{1}{\Delta _{A}^{g}},\dfrac{1}{\Delta _{B}^{g}},\dfrac{1}{\Delta _{C}^{g}}\right) \) is a solution x of the linear equation

$$\begin{aligned} \Phi ^{g}x=\frac{\sigma }{\mu Y}\left( \begin{array} [c]{c} \pi _{A}\left( \lambda ^{g}\right) \\ \pi _{B}\left( \lambda ^{g}\right) \\ \pi _{C}\left( \lambda ^{g}\right) \end{array} \right) {.} \end{aligned}$$
(18)

Suppose that \(\lambda _{i}^{g}>0\) for each i. From the equilibrium condition, \(\pi _{A}\left( \lambda ^{g}\right) =\pi _{B}\left( \lambda ^{g}\right) =\pi _{C}\left( \lambda ^{g}\right) =\xi \) holds for some value of \(\xi >0\). Hence, the Eq. (18) is rewritten as

$$\begin{aligned} \Phi ^{g}x=\frac{\sigma \xi }{\mu Y}\left( \begin{array}[c]{c} 1\\ 1\\ 1 \end{array} \right) {.} \end{aligned}$$

Since (18) has a solution \(^{t}\left( \dfrac{1}{\Delta _{A}^{g}}, \dfrac{1}{\Delta _{B}^{g}},\dfrac{1}{\Delta _{C}^{g}}\right) \), the following holds:Footnote 8

$$\begin{aligned} {{\text {rank}}} \begin{pmatrix} 1 &{}\quad \phi _{AB}^{g} &{}\quad \phi _{CA}^{g}\\ \phi _{AB}^{g} &{}\quad 1 &{}\quad \phi _{BC}^{g}\\ \phi _{CA}^{g} &{}\quad \phi _{BC}^{g} &{}\quad 1 \end{pmatrix} ={{\text {rank}}} \begin{pmatrix} 1 &{}\quad \phi _{AB}^{g} &{}\quad \phi _{CA}^{g} &{}\quad 1\\ \phi _{AB}^{g} &{}\quad 1 &{}\quad \phi _{BC}^{g} &{}\quad 1\\ \phi _{CA}^{g} &{}\quad \phi _{BC}^{g} &{}\quad 1 &{}\quad 1 \end{pmatrix} {.} \end{aligned}$$

This formula requires \(1+2\phi _{AB}^{g}\phi _{BC}^{g}\phi _{CA}^{g}-\left( \phi _{AB}^{g}\right) ^{2}-\left( \phi _{BC}^{g}\right) ^{2}-\left( \phi _{CA}^{g}\right) ^{2}\ne 0\), i.e., \(\det \Phi ^{g}\ne 0\). Furthermore, note that \(\Delta _{i}^{g}=\sum _{j}\lambda _{j}^{g}\phi _{ji}^{g}>0\) for each i. By Cramer’s rule, we have

$$\begin{aligned} \dfrac{1}{\Delta _{i}^{g}}=\frac{\sigma \xi }{\mu Y}\cdot \frac{\det \Phi _{i}^{g} }{\det \Phi ^{g}}>0 \end{aligned}$$

for each i, so that \(\frac{\det \Phi _{i}^{g}}{\det \Phi ^{g}}>0\) must hold for each i. Since \(\Delta _{i}^{g}=\sum _{j}\lambda _{j}^{g}\phi _{ji}^{g}\), we have

$$\begin{aligned} \left( \begin{array}[c]{c} \Delta _{A}^{g}\\ \Delta _{B}^{g}\\ \Delta _{C}^{g} \end{array} \right) =\Phi ^{g}\left( \begin{array}[c]{c} \lambda _{A}^{g}\\ \lambda _{B}^{g}\\ \lambda _{C}^{g} \end{array} \right) =\frac{\mu Y}{\sigma \xi }\det \Phi ^{g}\left( \begin{array}[c]{c} \dfrac{1}{\det \Phi _{A}^{g}}\\ \dfrac{1}{\det \Phi _{B}^{g}}\\ \dfrac{1}{\det \Phi _{C}^{g}} \end{array} \right) {.} \end{aligned}$$
(19)

To apply Cramer’s rule again, we have

$$\begin{aligned} \lambda _{i}^{g}=\frac{\mu Y}{\sigma \xi }\det \Phi ^{g}\cdot \frac{\det \hat{\Phi }_{i}^{g}}{\det \Phi ^{g}}=\frac{\mu Y}{\sigma \xi }\det {\hat{\Phi }}_{i}^{g} \end{aligned}$$

for each i, so that \(\det {\hat{\Phi }}_{i}^{g}>0\) must hold for each i. Thus, the fact that \(\lambda _{i}^{g}>0\) for each i suffices that \(\det \Phi ^{g} \ne 0\), \(\frac{\det \Phi _{i}^{g}}{\det \Phi ^{g}}>0\) and \(\det {\hat{\Phi }}_{i} ^{g}>0\).

Conversely, we shall consider the case that there does not exist an inner solution \(\lambda ^{g}\) which satisfies \(\pi _{i}\left( \lambda ^{g}\right) =\pi _{j}\left( \lambda ^{g}\right) \) for any ij. This case can be divided into three cases: the first is that linear equation (19) is not well-defined, i.e. either \(\det \Phi _{i}^{g}=0\) or \(\frac{\mu Y}{\sigma \xi }\frac{\det \Phi ^{g}}{\det \Phi _{i}^{g}}\le 0\) (while \(\Delta _{i}^{g}=\sum _{j}\lambda _{j}^{g}\phi _{ji}^{g}>0\)) for some i; the second is that linear equation (19) is well-defined but it does not have any solution, i.e., \(\det \Phi ^{g}=0\); and the third is that linear equation (19) is well-defined and has a solution \(\lambda \) but \(\lambda _{i}\notin \left( 0,1\right) \) for some i, i.e., \(\det {\hat{\Phi }}_{i}^{g}\le 0\) for some i. To sum up, if there does not exist a distribution of firms \(\lambda \) such that \(\lambda _{i}\in \left( 0,1\right) \) for each i, then \(\det \Phi ^{g}=0\), \(\det \Phi _{i}^{g}=0\), \(\frac{\det \Phi ^{g}}{\det \Phi _{i}^{g}}\le 0\) or \(\det {\hat{\Phi }}_{i}^{g}\le 0\) for some i. Thus, if \(\det \Phi ^{g}\ne 0\), \(\frac{\det \Phi ^{g}}{\det \Phi _{i}^{g}}>0\) and \(\det {\hat{\Phi }}_{i}^{g}>0\) for each i, there is a distribution of firms \(\lambda ^{g}\) such that \(\lambda _{i}^{g}\in \left( 0,1\right) \) for each i.

1.2 A.2 Proof of Lemma 2

From the above-mentioned proof of Lemma 1, we have

$$\begin{aligned} \lambda _{i}^{g}=\frac{\mu Y}{\sigma \xi }\det {\hat{\Phi }}_{i}^{g} \end{aligned}$$

and

$$\begin{aligned} \Delta _{i}^{g}=\frac{\mu Y}{\sigma \xi }\cdot \frac{\det \Phi ^{g}}{\det \Phi _{i}^{g}}{.} \end{aligned}$$

Since \(\sum _{i}\lambda _{i}^{g}=1\),

$$\begin{aligned} \sum _{i}\frac{\mu Y}{\sigma \xi }\det {\hat{\Phi }}_{i}^{g}=1{.} \end{aligned}$$

To solve the equation for \(\xi \),

$$\begin{aligned} \xi =\frac{\mu Y}{\sigma }\sum _{j}\det {\hat{\Phi }}_{j}^{g}{.} \end{aligned}$$

Finally, we show that, for any given network g, we have \(\sum _{i}\det {\hat{\Phi }}_{i}^{g}=3\) to obtain \(\pi _{i}\left( \lambda ^{g}\right) =\xi =3\frac{\mu }{\sigma }Y\).

For ease of expression, operator \(\left| \cdot \right| \) is defined over countries as \(\left| A\right| =1\), \(\left| B\right| =2\) and \(\left| C\right| =3\). Then we have \(\det \Phi _{i}^{g}=\sum _{j}\left( -1\right) ^{\left| j\right| +\left| i\right| }\det \Phi _{-ji}^{g}\) and \(\det {\hat{\Phi }}_{i}^{g}=\sum _{j}\left( -1\right) ^{\left| j\right| +\left| i\right| }\frac{\det \Phi _{-ji}^{g} }{\det \Phi _{j}^{g}}\) for each i, where \(\Phi _{-ji}^{g}\) is a \(2\times 2\) submatrix which is obtained by deleting \(\left| j\right| \)-th row vector and \(\left| i\right| \)-th column vector from \(\Phi ^{g}\). Also, we have \(\det \Phi _{-ji}^{g}=\det \Phi _{-ij}^{g}\) since \(^{t}\Phi ^{g}=\Phi ^{g}\). Therefore,

$$\begin{aligned} \sum _{i}\det {\hat{\Phi }}_{i}^{g}&=\sum _{i}\sum _{j}\left( -1\right) ^{\left| j\right| +\left| i\right| }\frac{\det \Phi _{-ji}^{g}}{\det \Phi _{j}^{g}}\\&=\sum _{j}\frac{\sum _{i}\left( -1\right) ^{\left| j\right| +\left| i\right| }\det \Phi _{-ji}^{g}}{\det \Phi _{j}^{g}}\\&=\sum _{j}\frac{\sum _{i}\left( -1\right) ^{\left| i\right| +\left| j\right| }\det \Phi _{-ij}^{g}}{\det \Phi _{j}^{g}}\\&=\sum _{j}\frac{\det \Phi _{j}^{g}}{\det \Phi _{j}^{g}}\\&=3{.} \end{aligned}$$

Appendix B The distribution of firms

In this section, we calculate the distribution of firms under each network g. By symmetry, the cases are separated by the network structure, specifically the number of links.

1.1 B.1 The case of the empty network

When \(g=\varnothing \),

$$\begin{aligned} \Phi ^{g}=\left( \begin{array}[c]{ccc} 1 &{}\quad \phi &{}\quad \phi \\ \phi &{}\quad 1 &{}\quad \phi \\ \phi &{}\quad \phi &{}\quad 1 \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \det \Phi ^{g}&=2\phi ^{3}-3\phi ^{2}+1=\left( 2\phi +1\right) \left( 1-\phi \right) ^{2}>0,\\ \det \Phi _{A}^{g}&=\det \Phi _{B}^{g}=\det \Phi _{C}^{g}=\phi ^{2}-2\phi +1=\left( 1-\phi \right) ^{2}>0,\\ \det {\hat{\Phi }}_{A}^{g}&=\det {\hat{\Phi }}_{B}^{g}=\det {\hat{\Phi }}_{C}^{g}=1. \end{aligned} \end{aligned}$$

From Lemma 2,

$$\begin{aligned} \lambda _{i}^{g}=\frac{1}{3} \end{aligned}$$

and

$$\begin{aligned} \Delta _{i}^{g}=\frac{2\phi ^{3}-3\phi ^{2}+1}{3\left( \phi ^{2}-2\phi +1\right) }=\frac{1}{3}\left( 2\phi +1\right) \end{aligned}$$

for each i.

1.2 B.2 The case of one-link networks

Without loss of generality, assume that \(g=\left\{ AB\right\} \). Then,

$$\begin{aligned} \Phi ^{g}=\left( \begin{array}[c]{ccc} 1 &{}\quad \phi \delta &{}\quad \phi \\ \phi \delta &{}\quad 1 &{}\quad \phi \\ \phi &{}\quad \phi &{}\quad 1 \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \det \Phi ^{g}&=\left( 1-\delta \phi \right) \left( \left( 1+2\phi \right) \left( 1-\phi \right) +\left( \delta -1\right) \phi \right)>0,\\ \det \Phi _{A}^{g}&=\det \Phi _{B}^{g}=\left( 1-\phi \right) \left( 1-\delta \phi \right)>0,\\ \det \Phi _{C}^{g}&=\left( 1-\delta \phi \right) \left\{ 1-\phi +\phi \left( \delta -1\right) \right\}>0,\\ \det {\hat{\Phi }}_{A}^{g}&=\det {\hat{\Phi }}_{B}^{g}=\frac{\left( 1-\phi \right) ^{2}+\phi \left( \delta -1\right) }{\left( 1-\phi \right) \left\{ 1-\phi +\phi \left( \delta -1\right) \right\} }>0\\ \det {\hat{\Phi }}_{C}^{g}&=\frac{4\phi ^{2}-3\phi +\delta \phi -3\delta \phi ^{2} +1}{\left( 1-\phi \right) \left\{ 1-\phi +\phi \left( \delta -1\right) \right\} }, \end{aligned} \end{aligned}$$

where \(\det {\hat{\Phi }}_{C}^{g}\) can be either positive or negative. If \(\det {\hat{\Phi }}_{C}^{g}>0\), from Lemma 2

$$\begin{aligned} \begin{aligned} \lambda _{A}^{g}&=\lambda _{B}^{g}=\frac{\phi ^{2}-3\phi +\delta \phi +1}{3\left( 1-\phi \right) \left( \delta \phi -2\phi +1\right) },\\ \lambda _{C}^{g}&=\frac{4\phi ^{2}-3\phi +\delta \phi -3\delta \phi ^{2}+1}{3\left( 1-\phi \right) \left( \delta \phi -2\phi +1\right) }, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \Delta _{A}^{g}&=\Delta _{B}^{g} =\frac{\left( 1+\delta \phi -2\phi ^{2}\right) }{3\left( 1-\phi \right) },\\ \Delta _{C}^{g}&=\frac{\left( 1+\delta \phi -2\phi ^{2}\right) }{3\left( 1+\delta \phi -2\phi \right) }. \end{aligned} \end{aligned}$$

If \(\det {\hat{\Phi }}_{C}^{g}\le 0\), then a distribution of firms \(\lambda \) does not satisfy that \(\lambda _{i}^{g}\in \left( 0,1\right) \) for each i. Suppose that \(\lambda _{A}^{g}<\lambda _{B}^{g}\). Then

$$\begin{aligned} \begin{aligned} \pi _{A}\left( \lambda ^{g}\right)&=\frac{\mu }{\sigma }Y\left\{ \frac{1}{\lambda _{A}^{g}+\delta \phi \lambda _{B}^{g}+\phi \lambda _{C}^{g}} +\frac{\delta \phi }{\delta \phi \lambda _{A}^{g}+\lambda _{B}^{g}+ \phi \lambda _{C}^{g}}+\frac{\phi }{\phi \lambda _{A}^{g}+\phi \lambda _{B}^{g} +\lambda _{C}^{g}}\right\} {,}\\ \pi _{B}\left( \lambda ^{g}\right)&=\frac{\mu }{\sigma }Y\left\{ \frac{\delta \phi }{\lambda _{A}^{g}+\delta \phi \lambda _{B}^{g}+ \phi \lambda _{C}^{g}}+\frac{1}{\delta \phi \lambda _{A}^{g}+\lambda _{B}^{g}+ \phi \lambda _{C}^{g}}+\frac{\phi }{\phi \lambda _{A}^{g}+\phi \lambda _{B}^{g}+ \lambda _{C}^{g}}\right\} {,}\\ \pi _{C}\left( \lambda ^{g}\right)&=\frac{\mu }{\sigma }Y\left\{ \frac{\phi }{\lambda _{A}^{g}+\delta \phi \lambda _{B}^{g}+\phi \lambda _{C}^{g}} +\frac{\phi }{\delta \phi \lambda _{A}^{g}+\lambda _{B}^{g}+ \phi \lambda _{C}^{g}}+\frac{1}{\phi \lambda _{A}^{g}+\phi \lambda _{B}^{g}+\lambda _{C}^{g}}\right\} {.} \end{aligned} \end{aligned}$$

Since \(\lambda _{A}^{g}+\delta \phi \lambda _{B}^{g}+\phi \lambda _{C}^{g} <\delta \phi \lambda _{A}^{g}+\lambda _{B}^{g}+\phi \lambda _{C}^{g}\), \(\pi _{A}\left( \lambda ^{g}\right) >\pi _{B}\left( \lambda ^{g}\right) \). This inequality implies \(\lambda _{B}^{g}=0\), but which contradicts \(0\le \lambda _{A}^{g}<\lambda _{B}^{g}\). Similarly, the assumption of \(\lambda _{A}^{g}>\lambda _{B}^{g}\) leads to a contradiction. Thus we have \(\lambda _{A}^{g}=\lambda _{B}^{g}\).

Since \(\lambda _{i}^{g}=0\) for some i, either \(\lambda _{A}^{g}=\lambda _{B}^{g}=0\) or \(\lambda _{C}^{g}=0\) holds. If \(\lambda _{A}^{g}=\lambda _{B} ^{g}=0\), then \(\lambda _{C}^{g}=1\) and

$$\begin{aligned} \begin{aligned} \pi _{A}\left( \lambda ^{g}\right)&=\pi _{B}\left( \lambda ^{g}\right) =\frac{\mu }{\sigma }Y\left( \frac{\phi ^{2}+1+\delta \phi }{\phi }\right) {,}\\ \pi _{C}\left( \lambda ^{g}\right)&=3\frac{\mu }{\sigma }Y{.} \end{aligned} \end{aligned}$$

Note that \(\frac{\phi ^{2}+1+\delta \phi }{\phi }>3\), we have \(\pi _{A}\left( \lambda ^{g}\right) =\pi _{B}\left( \lambda ^{g}\right) >\pi _{C}\left( \lambda ^{g}\right) \), which contradicts \(\lambda _{A}=\lambda _{B}<\lambda _{C} \). On the other hand, if \(\lambda _{C}^{g}=0\), then \(\lambda _{A}^{g} =\lambda _{B}^{g}=1/2\) and

$$\begin{aligned} \begin{aligned} \pi _{A}\left( \lambda ^{g}\right)&=\pi _{B}\left( \lambda ^{g}\right) =3\frac{\mu }{\sigma }Y{,}\\ \pi _{C}\left( \lambda ^{g}\right)&=\frac{\mu }{\sigma }Y\left( \frac{4\phi }{1+\delta \phi }+\frac{1}{\phi }\right) {.} \end{aligned} \end{aligned}$$

Since \(\det {\hat{\Phi }}_{C}^{g}\le 0\), i.e., \(4\phi ^{2}-3\phi +\delta \phi -3\delta \phi ^{2}+1\le 0\), \(\pi _{A}\left( \lambda \right) =\pi _{B}\left( \lambda \right) \ge \pi _{C}\left( \lambda \right) \) holds, which is consistent with the equilibrium condition.

To summarize, when \(g=\left\{ ij\right\} \), a distribution of firms \(\lambda \) is given by

$$\begin{aligned} \begin{aligned} \lambda _{i}^{g}&=\lambda _{j}^{g}=\frac{\phi ^{2}-3\phi +\delta \phi +1}{3\left( 1-\phi \right) \left( \delta \phi -2\phi +1\right) }{,}\\ \lambda _{k}^{g}&=\frac{4\phi ^{2}-3\phi +\delta \phi -3\delta \phi ^{2}+1}{3\left( 1-\phi \right) \left( \delta \phi -2\phi +1\right) }<\lambda _{A}=\lambda _{B} \end{aligned} \end{aligned}$$

if \(1<\delta <\min \left\{ \frac{4\phi ^{2}-3\phi +1}{\phi \left( 3\phi -1\right) },\frac{1}{\phi }\right\} \) and otherwise \(\lambda _{i}^{g}=\lambda _{j} ^{g}=\frac{1}{2}\) and \(\lambda _{k}^{g}=0\). Here, \(\frac{4\phi ^{2}-3\phi +1}{\phi \left( 3\phi -1\right) }\) is denoted by \(\overline{\delta _{1}}\) in Fig. 1. \(\overline{\delta _{1}}\) equals \(\frac{1}{\phi }\) when \(\phi =0.5\).

1.3 B.3 The case of star networks

Without loss of generality, assume that \(g=\left\{ AB,BC\right\} \). Then,

$$\begin{aligned} \Phi ^{g}=\left( \begin{array}[c]{ccc} 1 &{}\quad \phi \delta &{}\quad \phi \\ \phi \delta &{}\quad 1 &{}\quad \delta \phi \\ \phi &{}\quad \delta \phi &{}\quad 1 \end{array} \right) {.} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \det \Phi ^{g}&=\left( 1-\phi \right) \left( \phi -2\delta ^{2}\phi ^{2}+1\right) ,\\ \det \Phi _{A}^{g}&=\det \Phi _{C}^{g}=\left( 1-\phi \right) \left( 1-\delta \phi \right) >0,\\ \det \Phi _{B}^{g}&=\left( 1-\phi \right) \left( \phi -2\delta \phi +1\right) ,\\ \det {\hat{\Phi }}_{A}^{g}&=\det {\hat{\Phi }}_{C}^{g}=\frac{\delta ^{2}\phi ^{2} -3\delta \phi +\phi +1}{\left( 1-\delta \phi \right) \left( \phi -2\delta \phi +1\right) },\\ \det {\hat{\Phi }}_{B}^{g}&=\frac{4\delta ^{2}\phi ^{2}-3\delta \phi ^{2}-3\delta \phi +\phi +1}{\left( 1-\delta \phi \right) \left( \phi -2\delta \phi +1\right) }, \end{aligned} \end{aligned}$$

where \(\det \Phi ^{g}\), \(\det \Phi _{B}^{g}\), \(\det {\hat{\Phi }}_{A}^{g}\), \(\det {\hat{\Phi }}_{A}^{g}\) and \(\det {\hat{\Phi }}_{C}^{g}\) can be either positive or negative.

If \(1<\delta <\frac{3-\sqrt{5-4\phi }}{2\phi }\), i.e., \(\delta ^{2}\phi ^{2}-3\delta \phi +\phi +1>0\), then all the determinant above are positive. Hence, from Lemma 2,

$$\begin{aligned} \begin{aligned} \lambda _{A}^{g}&=\lambda _{C}^{g}=\frac{\delta ^{2}\phi ^{2}-3\delta \phi +\phi +1}{3\left( 1-\delta \phi \right) \left( \phi -2\delta \phi +1\right) },\\ \lambda _{B}^{g}&=\frac{4\delta ^{2}\phi ^{2}-3\delta \phi ^{2}-3\delta \phi +\phi +1}{3\left( 1-\delta \phi \right) \left( \phi -2\delta \phi +1\right) }, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \Delta _{A}^{g}&=\Delta _{C}^{g}=\frac{-2\delta ^{2}\phi ^{2}+\phi +1}{3\left( 1-\delta \phi \right) },\\ \Delta _{B}^{g}&=\frac{-2\delta ^{2}\phi ^{2}+\phi +1}{3\left( \phi -2\delta \phi +1\right) }. \end{aligned} \end{aligned}$$

If \(\frac{3-\sqrt{5-4\phi }}{2\phi }\le \delta <\frac{1}{\phi }\), i.e., \(\delta ^{2}\phi ^{2}-3\delta \phi +\phi +1\le 0\), then either \(\det {\hat{\Phi }} _{A}^{g}=\det {\hat{\Phi }}_{C}^{g}\le 0\) or \(\det \Phi _{B}^{g}\le 0\), so that a distribution of firms \(\lambda \) does not satisfy that \(\lambda _{i}^{g} \in \left( 0,1\right) \) for each i. Suppose that \(\lambda _{A}^{g} <\lambda _{C}^{g}\). Then

$$\begin{aligned} \begin{aligned} \pi _{A}\left( \lambda ^{g}\right)&=\frac{\mu }{\sigma }Y\left\{ \frac{1}{\lambda _{A}^{g}+\delta \phi \lambda _{B}^{g}+\phi \lambda _{C}^{g}} +\frac{\delta \phi }{\delta \phi \lambda _{A}^{g}+\lambda _{B}^{g}+\delta \phi \lambda _{C}^{g}}+\frac{\phi }{\phi \lambda _{A}^{g}+\delta \phi \lambda _{B} ^{g}+\lambda _{C}^{g}}\right\} {,}\\ \pi _{B}\left( \lambda ^{g}\right)&=\frac{\mu }{\sigma }Y\left\{ \frac{\delta \phi }{\lambda _{A}^{g}+\delta \phi \lambda _{B}^{g}+\phi \lambda _{C}^{g} }+\frac{1}{\delta \phi \lambda _{A}^{g}+\lambda _{B}^{g}+\delta \phi \lambda _{C} ^{g}}+\frac{\delta \phi }{\phi \lambda _{A}^{g}+\delta \phi \lambda _{B}^{g} +\lambda _{C}^{g}}\right\} {,}\\ \pi _{C}\left( \lambda ^{g}\right)&=\frac{\mu }{\sigma }Y\left\{ \frac{\phi }{\lambda _{A}^{g}+\delta \phi \lambda _{B}^{g}+ \phi \lambda _{C}^{g}} +\frac{\delta \phi }{\delta \phi \lambda _{A}^{g}+ \lambda _{B}^{g} +\delta \phi \lambda _{C}^{g}}+ \frac{1}{\phi \lambda _{A}^{g}+ \delta \phi \lambda _{B}^{g} +\lambda _{C}^{g}}\right\} {.} \end{aligned} \end{aligned}$$

Since \(\lambda _{A}^{g}+\delta \phi \lambda _{B}^{g}+\phi \lambda _{C}^{g} <\phi \lambda _{A}^{g}+\delta \phi \lambda _{B}^{g}+\lambda _{C}^{g}\), \(\pi _{A}\left( \lambda ^{g}\right) >\pi _{C}\left( \lambda ^{g}\right) \). This inequality implies \(\lambda _{C}^{g}=0\), which contradicts \(0\le \lambda _{A}^{g}<\lambda _{C}^{g}\). Similarly, the assumption of \(\lambda _{A} ^{g}>\lambda _{C}^{g}\) leads to a contradiction. Thus we have \(\lambda _{A}^{g}=\lambda _{C}^{g}\).

Since \(\lambda _{i}^{g}=0\) for some i, either \(\lambda _{A}^{g}=\lambda _{C}^{g}=0\) or \(\lambda _{B}^{g}=0\) holds. If \(\lambda _{B}^{g}=0\), \(\lambda _{A}^{g}=\lambda _{C}^{g}=1/2\) and

$$\begin{aligned} \begin{aligned} \pi _{A}\left( \lambda ^{g}\right)&=\pi _{B}\left( \lambda ^{g}\right) =3\frac{\mu }{\sigma }Y{,}\\ \pi _{C}\left( \lambda ^{g}\right)&=\frac{\mu }{\sigma }Y\left( \frac{4\delta \phi }{1+\delta \phi }+\frac{1}{\delta \phi }\right) {.} \end{aligned} \end{aligned}$$

Then, \(\pi _{A}\left( \lambda \right) =\pi _{B}\left( \lambda \right) \le \pi _{C}\left( \lambda \right) \), which implies \(\lambda _{A}^{g}=\lambda _{C}^{g}=0\). This is a contradiction. On the other hand, if \(\lambda _{A} ^{g}=\lambda _{C}^{g}=0\), \(\lambda _{B}^{g}=1\) and

$$\begin{aligned} \begin{aligned} \pi _{A}\left( \lambda ^{g}\right)&=\pi _{C}\left( \lambda ^{g}\right) =\frac{\mu }{\sigma }Y\left( \frac{\delta ^{2}\phi ^{2}+1+\phi }{\delta \phi }\right) {,}\\ \pi _{B}\left( \lambda ^{g}\right)&=3\frac{\mu }{\sigma }Y{.} \end{aligned} \end{aligned}$$

From the assumption of \(\delta ^{2}\phi ^{2}-3\delta \phi +\phi +1>0\), \(\pi _{A}\left( \lambda ^{g}\right) =\pi _{B}\left( \lambda ^{g}\right) >\pi _{C}\left( \lambda ^{g}\right) \), which is consistent with the equilibrium condition.

To summarize, when \(g=\left\{ ij,jk\right\} \), a distribution of firms \(\lambda \) is given by

$$\begin{aligned} \begin{aligned} \lambda _{i}^{g}&=\lambda _{k}^{g}=\frac{\delta ^{2}\phi ^{2}-3\delta \phi +\phi +1}{3\left( 1-\delta \phi \right) \left( \phi -2\delta \phi +1\right) } {,}\\ \lambda _{k}^{g}&=\frac{4\delta ^{2}\phi ^{2}-3\delta \phi ^{2}-3\delta \phi +\phi +1}{3\left( 1-\delta \phi \right) \left( \phi -2\delta \phi +1\right) } <\lambda _{A}=\lambda _{B} \end{aligned} \end{aligned}$$

if \(1<\delta <\frac{3-\sqrt{5-4\phi }}{2\phi }\) and otherwise \(\lambda _{i} ^{g}=\lambda _{k}^{g}=0\) and \(\lambda _{j}^{g}=1\). Here, \(\frac{3-\sqrt{5-4\phi }}{2\phi }\) is denoted by \(\overline{\delta _{2}}\) in Fig. 1. \(\overline{\delta _{2}}\) is smaller than \(\frac{1}{\phi }\) whenever \(0<\phi <1\).

1.4 B.4 The case of the complete network

When \(g=\left\{ AB,BC,CA\right\} \),

$$\begin{aligned} \Phi ^{g}=\left( \begin{array}[c]{ccc} 1 &{}\quad \delta \phi &{}\quad \delta \phi \\ \delta \phi &{}\quad 1 &{}\quad \delta \phi \\ \delta \phi &{}\quad \delta \phi &{}\quad 1 \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \det \Phi ^{g}&=2\delta ^{3}\phi ^{3}-3\delta ^{2}\phi ^{2}+1=\left( 2\delta \phi +1\right) \left( 1-\delta \phi \right) ^{2}>0,\\ \det \Phi _{A}^{g}&=\det \Phi _{B}^{g}=\det \Phi _{C}^{g}=\delta ^{2}\phi ^{2} -2\delta \phi +1=\left( 1-\delta \phi \right) ^{2}>0,\\ \det {\hat{\Phi }}_{A}^{g}&=\det {\hat{\Phi }}_{B}^{g}=\det {\hat{\Phi }}_{C}^{g}=1. \end{aligned} \end{aligned}$$

From Lemma 2,

$$\begin{aligned} \lambda _{i}^{g}=\frac{1}{3} \end{aligned}$$

and

$$\begin{aligned} \Delta _{i}^{g}=\frac{2\delta ^{3}\phi ^{3}-3\delta ^{2}\phi ^{2}+1}{3\left( \delta ^{2}\phi ^{2}-2\delta \phi +1\right) }=\frac{1}{3}\left( 2\delta \phi +1\right) \end{aligned}$$

for each i.

Appendix C The outcome networks in the games

1.1 C.1 The proof of Proposition 1

Proof

We check the condition to form a link at each negotiation:

  • Negotiation AB\(D_{A}^{\phi ,\left\{ AB\right\} }>0\) and \(D_{B} ^{\phi ,\left\{ AB\right\} }>0\), so \(\delta >1\). Therefore countries A and B always link together.

  • Negotiation BC By the result of Negotiation AB, the en route network Negotiation BC faces is \(\left\{ AB\right\} \). In any case, \(D_{B}^{\left\{ AB\right\} ,\left\{ AB,BC\right\} }>0\) and \(D_{C} ^{\left\{ AB\right\} ,\left\{ AB,BC\right\} }>0\) always hold. Therefore countries B and C always link together.

  • Negotiation CA By the result of Negotiation AB and Negotiation CA, the en route network Negotiation CA faces is \(\left\{ AB,BC\right\} \). In any case, \(D_{C}^{\left\{ AB,BC\right\} ,\left\{ AB,BC,CA\right\} }>0\) and \(D_{A}^{\left\{ AB,BC\right\} ,\left\{ AB,BC,CA\right\} }>0\) always hold. Therefore countries C and A always link together.

Finally, the outcome network of \(\Gamma _{M}\left( \phi ,\delta \right) \) is always complete. \(\square \)

1.2 C.2 The proof of Proposition 2

Proof

We solve by backward induction. Note that for any distinct ij and k, \(D_{i}^{\phi ,\left\{ ij\right\} }>0\), \(D_{i}^{\left\{ jk\right\} ,\left\{ ij,jk\right\} }>0\), \(D_{j}^{\left\{ jk\right\} ,\left\{ ij,jk\right\} }>0\) and \(D_{i}^{\left\{ ij,jk\right\} ,\left\{ ij,jk,ki\right\} }>0\).

  • Negotiation CA For any en route network g, both \(D_{C}^{g,g\cup \left\{ CA\right\} }>0\) and \(D_{A}^{g,g\cup \left\{ CA\right\} }>0\) always hold and hence countries C and A always link together.

  • Negotiation BC Negotiation BC consider the strategy of Negotiation CA. When the en route network Negotiation BC faces is \(\phi \), the outcome network is \(\left\{ BC,CA\right\} \) if countries B and C conclude a BTA, and \(\left\{ CA\right\} \) if not. Since \(D_{B}^{\left\{ CA\right\} \left\{ BC,CA\right\} }>0\) and \(D_{C}^{\left\{ CA\right\} \left\{ BC,CA\right\} }>0\) in any case, countries B and C decide to link together. When the en route network Negotiation BC faces is \(\left\{ AB\right\} \), the outcome network is \(\left\{ AB,BC,CA\right\} \) if countries B and C conclude a BTA, and \(\left\{ AB,CA\right\} \) if not. Since \(D_{B}^{\left\{ AB,CA\right\} \left\{ AB,BC,CA\right\} }>0\) and \(D_{C}^{\left\{ AB,CA\right\} \left\{ AB,BC,CA\right\} }>0\) in any case, countries B and C decide to link together.

  • Negotiation AB Negotiation AB consider the strategies of Negotiation CA and Negotiation BC. Since the en route network Negotiation AB faces is \(\phi \), the outcome network is \(\left\{ AB,BC,CA\right\} \) if countries A and B conclude a BTA, and \(\left\{ BC,CA\right\} \) if not. Since \(D_{A}^{\left\{ BC,CA\right\} \left\{ AB,BC,CA\right\} }>0\) and \(D_{B}^{\left\{ BC,CA\right\} \left\{ AB,BC,CA\right\} }>0\) hold in any case, countries A and B decide to link together.

Finally, the outcome network of \(\Gamma _{F}\left( \phi ,\delta \right) \) is also always complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, Y., Tsubota, K. Myopic or farsighted: bilateral trade agreements among three symmetric countries. Lett Spat Resour Sci 12, 233–256 (2019). https://doi.org/10.1007/s12076-019-00239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12076-019-00239-9

Keywords

JEL Classification

Navigation