Skip to main content

Advertisement

Log in

Impact of elobixibat on liver tumors, microbiome, and bile acid levels in a mouse model of nonalcoholic steatohepatitis

  • Original Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Background

Elevated bile acid levels have been associated with liver tumors in fatty liver. Ileal bile acid transporter inhibitors may inhibit bile acid absorption in the distal ileum and increase bile acid levels in the colon, potentially decreasing the serum and hepatic bile acid levels. This study aimed to investigate the impact of these factors on liver tumor.

Methods

C57BL/6J mice received a one-time intraperitoneal injection of 25-mg/kg diethylnitrosamine. They were fed a choline-deficient high-fat diet for 20 weeks starting from 8 weeks of age, with or without elobixibat (EA Pharma, Tokyo, Japan).

Results

Both groups showed liver fat accumulation and fibrosis, with no significant differences between the two groups. However, mice with elobixibat showed fewer liver tumors. The total serum bile acid levels, including free, tauro-conjugated, glyco-conjugated, and tauro-α/β-muricholic acids in the liver, were noticeably reduced following elobixibat treatment. The proportion of gram-positive bacteria in feces was significantly lower in the group treated with elobixibat (5.4%) than in the group without elobixibat (33.7%).

Conclusion

Elobixibat suppressed tumor growth by inhibiting bile acid reabsorption, and decreasing total bile acid and primary bile acid levels in the serum and liver. Additionally, the presence of bile acids in the colon may have led to a significant reduction in the proportion of gram-positive bacteria, potentially resulting in decreased secondary bile acid synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, Type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152(7):1679-1694.e3. https://doi.org/10.1053/j.gastro.2017.01.055

    Article  CAS  PubMed  Google Scholar 

  2. Chiang JYL. Bile acid metabolism and signaling. Compr Physiol. 2013;3(3):1191–1212. https://doi.org/10.1002/cphy.c120023

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97–101. https://doi.org/10.1038/nature12347

    Article  CAS  PubMed  Google Scholar 

  4. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360(6391):5931. https://doi.org/10.1126/science.aan5931

    Article  CAS  Google Scholar 

  5. Simbrunner B, Trauner M, Reiberger T. Review article: therapeutic aspects of bile acid signalling in the gut-liver axis. Aliment Pharmacol Ther. 2021;54(10):1243–1262. https://doi.org/10.1111/apt.16602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jia W, Xie G, Jia W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15(2):111–128. https://doi.org/10.1038/nrgastro.2017.119

    Article  CAS  PubMed  Google Scholar 

  7. Wong BS, Camilleri M, McKinzie S, Burton D, Graffner H, Zinsmeister AR. Effects of A3309, an ileal bile acid transporter inhibitor, on colonic transit and symptoms in females with functional constipation. Am J Gastroenterol. 2011;106(12):2154–2164. https://doi.org/10.1038/ajg.2011.285

    Article  CAS  PubMed  Google Scholar 

  8. Kishida N, Matsuda S, Itano O, Shinoda M, Kitago M, Yagi H, et al. Development of a novel mouse model of hepatocellular carcinoma with nonalcoholic steatohepatitis using a high-fat, choline-deficient diet and intraperitoneal injection of diethylnitrosamine. BMC Gastroenterol. 2016;16:61. https://doi.org/10.1186/s12876-016-0477-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamamoto K, Honda T, Yokoyama S, Ma L, Kato A, Ito T, et al. Microbiome, fibrosis and tumor networks in a non-alcoholic steatohepatitis model of a choline-deficient high-fat diet using diethylnitrosamine. Dig Liver Dis. 2021;53(11):1443–1450. https://doi.org/10.1016/j.dld.2021.02.013

    Article  CAS  PubMed  Google Scholar 

  10. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  13. Asano T, Taki K, Kitamori K, Naito H, Nakajima T, Tsuchihashi H, et al. One-pot extraction and quantification method for bile acids in the rat liver by capillary liquid chromatography tandem mass spectrometry. ACS Omega. 2021;6(12):8588–8597. https://doi.org/10.1021/acsomega.1c00403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chong J, Liu P, Zhou G, Xia J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat Protoc. 2020;15(3):799–821. https://doi.org/10.1038/s41596-019-0264-1

    Article  CAS  PubMed  Google Scholar 

  15. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nimer N, Choucair I, Wang Z, Nemet I, Li L, Gukasyan J, et al. Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression. Metabolism. 2021;116:154457. https://doi.org/10.1016/j.metabol.2020.154457

    Article  CAS  PubMed  Google Scholar 

  17. Inoue T, Funatsu Y, Ohnishi M, Isogawa M, Kawashima K, Tanaka M, et al. Bile acid dysmetabolism in the gut-microbiota-liver axis under hepatitis C virus infection. Liver Int. 2022;42(1):124–134. https://doi.org/10.1111/liv.15041

    Article  CAS  PubMed  Google Scholar 

  18. Liu N, Feng J, Lv Y, Liu Q, Deng J, Xia Y, et al. Role of bile acids in the diagnosis and progression of liver cirrhosis: a prospective observational study. Exp Ther Med. 2019;18(5):4058–4066. https://doi.org/10.3892/etm.2019.8011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo P, Yin P, Hua R, Tan Y, Li Z, Qiu G, et al. A Large-scale, multicenter serum metabolite biomarker identification study for the early detection of hepatocellular carcinoma. Hepatology. 2018;67(2):662–675. https://doi.org/10.1002/hep.29561

    Article  CAS  PubMed  Google Scholar 

  20. Fu J, Yu M, Xu W, Yu S. Research progress of bile acids in cancer. Front Oncol. 2021;11:778258. https://doi.org/10.3389/fonc.2021.778258

    Article  CAS  PubMed  Google Scholar 

  21. Sun R, Zhang Z, Bao R, Guo X, Gu Y, Yang W, et al. Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. J Hepatol. 2022;77(2):453–466. https://doi.org/10.1016/j.jhep.2022.02.030

    Article  CAS  PubMed  Google Scholar 

  22. Graffner H, Gillberg PG, Rikner L, Marschall HU. The ileal bile acid transporter inhibitor A4250 decreases serum bile acids by interrupting the enterohepatic circulation. Aliment Pharmacol Ther. 2016;43(2):303–310. https://doi.org/10.1111/apt.13457

    Article  CAS  PubMed  Google Scholar 

  23. Nakajima A, Ishizaki S, Matsuda K, Kurosu S, Taniguchi S, Gillberg PG, et al. Impact of elobixibat on serum and fecal bile acid levels and constipation symptoms in patients with chronic constipation. J Gastroenterol Hepatol. 2022;37(5):883–890. https://doi.org/10.1111/jgh.15800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamauchi R, Takedatsu H, Yokoyama K, Yamauchi E, Kawashima M, Nagata T, et al. Elobixibat, an ileal bile acid transporter inhibitor, ameliorates non-alcoholic steatohepatitis in mice. Hepatol Int. 2021;15(2):392–404. https://doi.org/10.1007/s12072-020-10107-0

    Article  PubMed  Google Scholar 

  25. Zhang L, Xie C, Nichols RG, Chan SHJ, Jiang C, Hao R, et al. Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism. mSystems. 2016;1(5):e00070-e116. https://doi.org/10.1128/mSystems.00070-16

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, et al. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun. 2013;4:2384. https://doi.org/10.1038/ncomms3384

    Article  CAS  PubMed  Google Scholar 

  27. Sun L, Beggs K, Borude P, Edwards G, Bhushan B, Walesky C, et al. Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling. Am J Physiol Gastrointest Liver Physiol. 2016;311(1):G91–G104. https://doi.org/10.1152/ajpgi.00027.2015

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gong Y, Li K, Qin Y, Zeng K, Liu J, Huang S, et al. Norcholic acid promotes tumor progression and immune escape by regulating farnesoid X receptor in hepatocellular carcinoma. Front Oncol. 2021;11:711448. https://doi.org/10.3389/fonc.2021.711448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh V, Yeoh BS, Abokor AA, Golonka RM, Tian Y, Patterson AD, et al. Vancomycin prevents fermentable fiber-induced liver cancer in mice with dysbiotic gut microbiota. Gut Microbes. 2020;11(4):1077–1091. https://doi.org/10.1080/19490976.2020.1743492

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu LX, Schwabe RF. The gut microbiome and liver cancer: mechanisms and clinical translation. Nat Rev Gastroenterol Hepatol. 2017;14(9):527–539. https://doi.org/10.1038/nrgastro.2017.72

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Division of Experimental Animals and Medical Research Engineering, Nagoya University Graduate School of Medicine, for housing the animals and for maintenance of experimental equipment. The authors wish to acknowledge the Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, for the use of MiSeq.

Funding

This work was supported in part by a Grant-in-Aid for Young Scientists (Grant number 21K15970 for KY) and Grant-in-Aid for Scientific Research (C) (Grant number 20K08382 for TH) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Contributions

YS, KY, and TH conceived the project and designed the experiments. YS, KY, AK, HM, SY, and TH collected and processed the samples with the help of TI, NI, YI, and MI. TA and KZ measured the bile acid levels and revised the manuscript. YS, KY, and TH performed the data analyses and wrote the manuscript. MN, AE, MF, and HK edited the manuscript.

Corresponding author

Correspondence to Takashi Honda.

Ethics declarations

Conflict of interest

Yoshiaki Sugiyama, Kenta Yamamoto, Takashi Honda, Asuka Kato, Hisanori Muto, Shinya Yokoyama, Takanori Ito, Norihiro Imai, Yoji Ishizu, Masanao Nakamura, Tomomi Asano, Atsushi Enomoto, Kei Zaitsu, Masatoshi Ishigami, Mitsuhiro Fujishiro, Hiroki Kawashima have no relevant financial or non-financial interest to disclose.

Ethical approval

The Animal Care and Research and Development Committees of the Division of Experimental Animals at Nagoya University approved all experiments. All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4910 KB)

Supplementary file2 (PDF 230 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, Y., Yamamoto, K., Honda, T. et al. Impact of elobixibat on liver tumors, microbiome, and bile acid levels in a mouse model of nonalcoholic steatohepatitis. Hepatol Int 17, 1378–1392 (2023). https://doi.org/10.1007/s12072-023-10581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-023-10581-2

Keywords

Navigation