Skip to main content

Advertisement

Log in

Current status and perspectives for computer-aided ultrasonic diagnosis of liver lesions using deep learning technology

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

An ultrasound (US) examination is a common noninvasive technique widely applied for diagnosis of a variety of diseases. Based on the rapid development of US equipment, many US images have been accumulated and are now available and ready for the preparation of a database for the development of computer-aided US diagnosis with deep learning technology. On the contrary, because of the unique characteristics of the US image, there could be some issues that need to be resolved for the establishment of computer-aided diagnosis (CAD) system in this field. For example, compared to the other modalities, the quality of a US image is, currently, highly operator dependent; the conditions of examination should also directly affect the quality of US images. So far, these factors have hampered the application of deep learning-based technology in the field of US diagnosis. However, the development of CAD and US technologies will contribute to an increase in diagnostic quality, facilitate the development of remote medicine, and reduce the costs in the national health care through the early diagnosis of diseases. From this point of view, it may have a large enough potential to induce a paradigm shift in the field of US imaging and diagnosis of liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kudo M. Breakthrough imaging in hepatocellular carcinoma. Liver Cancer 2016;5:47–54

    Article  CAS  PubMed  Google Scholar 

  2. Makino Y, Imai Y, Igura T, Kogita S, Sawai Y, Fukuda K et al. Feasibility of extracted-overlay fusion imaging for intraoperative treatment evaluation of radiofrequency ablation for hepatocellular carcinoma. Liver Cancer 2016;5:269–279

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kudo M. Defect reperfusion rmaging with sonazoid(R): a breakthrough in hepatocellular carcinoma. Liver Cancer 2016;5:1–7

    Article  CAS  PubMed  Google Scholar 

  4. Park HJ, Choi BI, Lee ES, Park SB, Lee JB. How to differentiate borderline hepatic nodules in hepatocarcinogenesis: emphasis on imaging diagnosis. Liver Cancer 2017;6:189–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohammed HA, Yang JD, Giama NH, Choi J, Ali HM, Mara KC et al. Factors influencing surveillance for hepatocellular carcinoma in patients with liver cirrhosis. Liver Cancer 2017;6:126–136

    Article  Google Scholar 

  6. Minhas F, Sabih D, Hussain M. Automated classification of liver disorders using ultrasound images. J Med Syst 2012;36:3163–3172

    Article  PubMed  Google Scholar 

  7. Esses SJ, Lu X, Zhao T, Shanbhogue K, Dane B, Bruno M et al. Automated image quality evaluation of T2-weighted liver MRI utilizing deep learning architecture. J Magn Reson Imaging 2018;47:723–728

    Article  PubMed  Google Scholar 

  8. Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology 2018;286:887–896

    Article  PubMed  Google Scholar 

  9. Huang Q, Zhang F, Li X. Machine learning in ultrasound computer-aided diagnostic systems: a survey. Biomed Res Int 2018;2018:5137904

    PubMed  PubMed Central  Google Scholar 

  10. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402–2410

    Article  PubMed  Google Scholar 

  11. Ehteshami B, Veta M, van Diest PJ, van Ginneken B, Karssemeijer N, Litjens G et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318:2199–2210

    Article  Google Scholar 

  12. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115–118

    Article  CAS  PubMed  Google Scholar 

  13. Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018;172(1122–1131):e1129

    Google Scholar 

  14. Huang W, Li N, Lin Z, Huang GB, Zong W, Zhou J et al. Liver tumor detection and segmentation using kernel-based extreme learning machine. Conf Proc IEEE Eng Med Biol Soc 2013;2013:3662–3665

    PubMed  Google Scholar 

  15. Mittal D, Kumar V, Saxena SC, Khandelwal N, Kalra N. Neural network based focal liver lesion diagnosis using ultrasound images. Comput Med Imaging Graph 2011;35:315–323

    Article  PubMed  Google Scholar 

  16. Nishida N, Kudo M. Alteration of epigenetic profile in human hepatocellular carcinoma and its clinical implications. Liver Cancer 2014;3:417–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Virmani J, Kumar V, Kalra N, Khandelwal N. SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. J Digit Imaging 2013;26:530–543

    Article  PubMed  Google Scholar 

  18. Virmani J, Kumar V, Kalra N, Khandelwal N. Characterization of primary and secondary malignant liver lesions from B-mode ultrasound. J Digit Imaging 2013;26:1058–1070

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hwang YN, Lee JH, Kim GY, Jiang YY, Kim SM. Classification of focal liver lesions on ultrasound images by extracting hybrid textural features and using an artificial neural network. Biomed Mater Eng 2015;26(Suppl 1):S1599–S1611

    PubMed  Google Scholar 

  20. Streba CT, Ionescu M, Gheonea DI, Sandulescu L, Ciurea T, Saftoiu A et al. Contrast-enhanced ultrasonography parameters in neural network diagnosis of liver tumors. World J Gastroenterol 2012;18:4427–4434

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gatos I, Tsantis S, Spiliopoulos S, Skouroliakou A, Theotokas I, Zoumpoulis P et al. A new automated quantification algorithm for the detection and evaluation of focal liver lesions with contrast-enhanced ultrasound. Med Phys 2015;42:3948–3959

    Article  PubMed  Google Scholar 

  22. Kondo S, Takagi K, Nishida M, Iwai T, Kudo Y, Ogawa K et al. Computer-aided diagnosis of focal liver lesions using contrast-enhanced ultrasonography with perflubutane microbubbles. IEEE Trans Med Imaging 2017;36:1427–1437

    Article  PubMed  Google Scholar 

  23. Guo LH, Wang D, Qian YY, Zheng X, Zhao CK, Li XL et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin Hemorheol Microcirc 2018;69:343–354

    Article  PubMed  Google Scholar 

  24. Subramanya MB, Kumar V, Mukherjee S, Saini M. A CAD system for B-mode fatty liver ultrasound images using texture features. J Med Eng Technol 2015;39:123–30

    Article  CAS  PubMed  Google Scholar 

  25. Mihailescu DM, Gui V, Toma CI, Popescu A, Sporea I. Computer aided diagnosis method for steatosis rating in ultrasound images using random forests. Med Ultrason 2013;15:184–190

    Article  PubMed  Google Scholar 

  26. Kim KB, Kim CW. Quantification of hepatorenal index for computer-aided fatty liver classification with self-organizing map and fuzzy stretching from ultrasonography. Biomed Res Int 2015;2015:535894

    PubMed  PubMed Central  Google Scholar 

  27. Acharya UR, Raghavendra U, Fujita H, Hagiwara Y, Koh JE, Hong TJ et al. Automated characterization of fatty liver disease and cirrhosis using curvelet transform and entropy features extracted from ultrasound images. Comput Biol Med 2016;79:250–258

    Article  CAS  PubMed  Google Scholar 

  28. Procopet B, Cristea VM, Robic MA, Grigorescu M, Agachi PS, Metivier S et al. Serum tests, liver stiffness and artificial neural networks for diagnosing cirrhosis and portal hypertension. Dig Liver Dis 2015;47:411–416

    Article  PubMed  Google Scholar 

  29. Gatos I, Tsantis S, Spiliopoulos S, Karnabatidis D, Theotokas I, Zoumpoulis P et al. A machine-learning algorithm toward color analysis for chronic liver disease classification, employing ultrasound shear wave elastography. Ultrasound Med Biol 2017;43:1797–1810

    Article  PubMed  Google Scholar 

  30. Zhang L, Li QY, Duan YY, Yan GZ, Yang YL, Yang RJ. Artificial neural network aided non-invasive grading evaluation of hepatic fibrosis by duplex ultrasonography. BMC Med Inform Decis Mak 2012;12:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Biswas M, Kuppili V, Edla DR, Suri HS, Saba L, Marinhoe RT et al. Symtosis: a liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput Methods Programs Biomed 2018;155:165–177

    Article  PubMed  Google Scholar 

  32. Wang K, Lu X, Zhou H, Gao Y, Zheng J, Tong M, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut 2018. https://doi.org/10.1136/gutjnl-2018-316204.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Banzato T, Bonsembiante F, Aresu L, Gelain ME, Burti S, Zotti A. Use of transfer learning to detect diffuse degenerative hepatic diseases from ultrasound images in dogs: a methodological study. Vet J 2018;233:35–40

    Article  CAS  PubMed  Google Scholar 

  34. Zeng YZ, Zhao YQ, Liao M, Zou BJ, Wang XF, Wang W. Liver vessel segmentation based on extreme learning machine. Phys Med 2016;32:709–716

    Article  PubMed  Google Scholar 

  35. Nishida N, Kitano M, Sakurai T, Kudo M. Molecular mechanism and prediction of sorafenib chemoresistance in human hepatocellular carcinoma. Dig Dis 2015;33:771–779

    Article  PubMed  Google Scholar 

  36. Nishida N, Arizumi T, Hagiwara S, Ida H, Sakurai T, Kudo M. MicroRNAs for the prediction of early response to sorafenib treatment in human hepatocellular carcinoma. Liver Cancer 2017;6:113–125

    Article  CAS  PubMed  Google Scholar 

  37. Nishida N, Kudo M. Immune checkpoint blockade for the treatment of human hepatocellular carcinoma. Hepatol Res 2018;48:622–634

    Article  CAS  PubMed  Google Scholar 

  38. Tarek M, Hassan ME, El-Sayed S. Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arab J Sci Eng 2017;42:3127–3140

    Article  Google Scholar 

  39. Meng DZL, Cao G, Cao W, Zhang G, Hu B. Liver fibrosis classification based on trasnfer learning adn FCNet for ultrasound image. IEEE Access 2017;5:5804–5810

    Google Scholar 

  40. Liu X, Song JL, Wang SH, Zhao JW, Chen YQ. Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors 2017;17:E149(Basel).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Japan Agency for Medical Research and Development under the Grant number 18lk1010030h0001 (M. Kudo, T. Shiina, N. Nishida), and partially supported by Grant-in-Aid for Scientific Research (KAKENHI: 16K09382) from the Japanese Society for the Promotion of Science (N. Nishida) and a grant from the Smoking Research Foundation (N. Nishida).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoshi Nishida.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Ethical approval

This is not a research paper involving human participants and/or animals; informed consent is not required.

Informed consent

Informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishida, N., Yamakawa, M., Shiina, T. et al. Current status and perspectives for computer-aided ultrasonic diagnosis of liver lesions using deep learning technology. Hepatol Int 13, 416–421 (2019). https://doi.org/10.1007/s12072-019-09937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-019-09937-4

Keywords

Navigation