Skip to main content
Log in

Liver progenitor cells-mediated liver regeneration in liver cirrhosis

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Cirrhosis is defined as the histological development of regenerative nodules surrounded by fibrous bands in response to chronic liver injury. In cirrhotic liver where hepatocytes proliferation is compromised, liver progenitor cells (LPCs) are activated and then differentiated into hepatocytes and cholangiocytes, leading to the generation of regenerative nodules and functional restoration. Here, we summarize and discuss recent findings on the mechanisms underlying LPCs-mediated regeneration in liver cirrhosis. Firstly, we provide recent research on the mechanism underlying LPCs activation in severe or chronic liver injury. Secondly, we present new and exciting data on exploring the origin of LPCs, which reveal that the hepatocytes give rise to duct-like progenitors that then differentiate back into hepatocytes in chronic liver injury or liver cirrhosis. Finally, we highlight recent findings from the literature exploring the role of LPCs niche in directing the behavior and fate of LPCs. This remarkable insight into the cellular and molecular mechanisms of LPCs-mediated regeneration in liver cirrhosis will provide a basis for translating this knowledge into clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang Z, Song Y, Tu W, He X, Lin J, Liu F. Beta-2 spectrin is involved in hepatocyte proliferation through the interaction of TGFbeta/Smad and PI3 K/AKT signalling. Liver Int 2012;32:1103–1111

    Article  CAS  PubMed  Google Scholar 

  2. Duncan AW, Dorrell C, Grompe M. Stem cells and liver regeneration. Gastroenterology 2009;137:466–481

    Article  PubMed  PubMed Central  Google Scholar 

  3. Williams MJ, Clouston AD, Forbes SJ. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology 2014;146:349–356

    Article  PubMed  Google Scholar 

  4. Katoonizadeh A, Poustchi H, Malekzadeh R. Hepatic progenitor cells in liver regeneration: current advances and clinical perspectives. Liver Int 2014;34:1464–1472

    Article  PubMed  Google Scholar 

  5. Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology 2014;59:1617–1626

    Article  CAS  PubMed  Google Scholar 

  6. Demetris AJ, Seaberg EC, Wennerberg A, Ionellie J, Michalopoulos G. Ductular reaction after submassive necrosis in humans. Special emphasis on analysis of ductular hepatocytes. Am J Pathol 1996;149:439–448

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol 1999;154:537–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Katoonizadeh A, Nevens F, Verslype C, Pirenne J, Roskams T. Liver regeneration in acute severe liver impairment: a clinicopathological correlation study. Liver Int 2006;26:1225–1233

    Article  PubMed  Google Scholar 

  9. Falkowski O, An HJ, Ianus IA, Chiriboga L, Yee H, West AB, et al. Regeneration of hepatocyte ‘buds’ in cirrhosis from intrabiliary stem cells. J Hepatol 2003;39:357–364

    Article  CAS  PubMed  Google Scholar 

  10. Wang Z, Liu F, Tu W, Chang Y, Yao J, Wu W, et al. Embryonic liver fodrin involved in hepatic stellate cell activation and formation of regenerative nodule in liver cirrhosis. J Cell Mol Med 2012;16:118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jung Y, Witek RP, Syn WK, Choi SS, Omenetti A, Premont R, et al. Signals from dying hepatocytes trigger growth of liver progenitors. Gut 2010;59:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li D, Cen J, Chen X, Conway EM, Ji Y, Hui L. Hepatic loss of survivin impairs postnatal liver development and promotes expansion of hepatic progenitor cells in mice. Hepatology 2013;58:2109–2121

    Article  CAS  PubMed  Google Scholar 

  13. Thenappan A, Li Y, Kitisin K, Rashid A, Shetty K, Johnson L, et al. Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver. Hepatology 2010;51:1373–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Viebahn CS, Benseler V, Holz LE, Elsegood CL, Vo M, Bertolino P, et al. Invading macrophages play a major role in the liver progenitor cell response to chronic liver injury. J Hepatol 2010;53:500–507

    Article  CAS  PubMed  Google Scholar 

  15. Jakubowski A, Ambrose C, Parr M, Lincecum JM, Wang MZ, Zheng TS, et al. TWEAK induces liver progenitor cell proliferation. J Clin Invest 2005;115:2330–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tirnitz-Parker JE, Viebahn CS, Jakubowski A, Klopcic BR, Olynyk JK, Yeoh GC, et al. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology 2010;52:291–302

    Article  CAS  PubMed  Google Scholar 

  17. Dorrell C, Erker L, Schug J, Kopp JL, Canaday PS, Fox AJ, et al. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes Dev 2011;25:1193–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huch M, Dorrell C, Boj SF, van Es JH, Li VS, van de Wetering M, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 2013;494:247–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 2011;43:34–41

    Article  CAS  PubMed  Google Scholar 

  20. Espanol-Suner R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S, et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 2012;143(1564–1575):e1567

    Google Scholar 

  21. Kordes C, Sawitza I, Muller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H, et al. CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun 2007;352:410–417

    Article  CAS  PubMed  Google Scholar 

  22. Kordes C, Sawitza I, Gotze S, Herebian D, Haussinger D. Hepatic stellate cells contribute to progenitor cells and liver regeneration. J Clin Invest 2014;124:5503–5515

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang L, Jung Y, Omenetti A, Witek RP, Choi S, Vandongen HM, et al. Fate-mapping evidence that hepatic stellate cells are epithelial progenitors in adult mouse livers. Stem Cells 2008;26:2104–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michelotti GA, Xie G, Swiderska M, Choi SS, Karaca G, Kruger L, et al. Smoothened is a master regulator of adult liver repair. J Clin Invest 2013;123:2380–2394

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Swiderska-Syn M, Syn WK, Xie G, Kruger L, Machado MV, Karaca G, et al. Myofibroblastic cells function as progenitors to regenerate murine livers after partial hepatectomy. Gut 2014;63:1333–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H, et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 2014;15:340–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sekiya S, Suzuki A. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. Am J Pathol 2014;184:1468–1478

    Article  CAS  PubMed  Google Scholar 

  28. Schaub JR, Malato Y, Gormond C, Willenbring H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep 2014;8:933–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tarlow BD, Finegold MJ, Grompe M. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology 2014;60:278–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodrigo-Torres D, Affo S, Coll M, Morales-Ibanez O, Millan C, Blaya D, et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology 2014;60:1367–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Malato Y, Naqvi S, Schurmann N, Ng R, Wang B, Zape J, et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Invest 2011;121:4850–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 2014;15:605–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 2005;41:535–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tanimizu N, Nishikawa Y, Ichinohe N, Akiyama H, Mitaka T. Sry HMG box protein 9-positive (Sox9+) epithelial cell adhesion molecule-negative (EpCAM-) biphenotypic cells derived from hepatocytes are involved in mouse liver regeneration. J Biol Chem 2014;289:7589–7598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kordes C, Haussinger D. Hepatic stem cell niches. J Clin Invest 2013;123:1874–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E, Theise ND. The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology 2008;47:1994–2002

    Article  PubMed  PubMed Central  Google Scholar 

  37. Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, et al. The canals of Hering and hepatic stem cells in humans. Hepatology 1999;30:1425–1433

    Article  CAS  PubMed  Google Scholar 

  38. Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 2004;39:1739–1745

    Article  PubMed  Google Scholar 

  39. Lorenzini S, Bird TG, Boulter L, Bellamy C, Samuel K, Aucott R, et al. Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut 2010;59:645–654

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest 2013;123:1887–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Hul NK, Abarca-Quinones J, Sempoux C, Horsmans Y, Leclercq IA. Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology 2009;49:1625–1635

    Article  PubMed  Google Scholar 

  42. Pintilie DG, Shupe TD, Oh SH, Salganik SV, Darwiche H, Petersen BE. Hepatic stellate cells’ involvement in progenitor-mediated liver regeneration. Lab Invest 2010;90:1199–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruddell RG, Knight B, Tirnitz-Parker JE, Akhurst B, Summerville L, Subramaniam VN, et al. Lymphotoxin-beta receptor signaling regulates hepatic stellate cell function and wound healing in a murine model of chronic liver injury. Hepatology 2009;49:227–239

    Article  CAS  PubMed  Google Scholar 

  44. Lin N, Tang Z, Deng M, Zhong Y, Lin J, Yang X, et al. Hedgehog-mediated paracrine interaction between hepatic stellate cells and marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2008;372:260–265

    Article  CAS  PubMed  Google Scholar 

  45. Takase HM, Itoh T, Ino S, Wang T, Koji T, Akira S, et al. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 2013;27:169–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med 2012;18:572–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spee B, Carpino G, Schotanus BA, Katoonizadeh A, Vander Borght S, Gaudio E, et al. Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut 2010;59:247–257

    Article  PubMed  Google Scholar 

  48. Streetz KL, Tacke F, Leifeld L, Wustefeld T, Graw A, Klein C, et al. Interleukin 6/gp130-dependent pathways are protective during chronic liver diseases. Hepatology 2003;38:218–229

    Article  CAS  PubMed  Google Scholar 

  49. Zhu NL, Asahina K, Wang J, Ueno A, Lazaro R, Miyaoka Y, et al. Hepatic stellate cell-derived delta-like homolog 1 (DLK1) protein in liver regeneration. J Biol Chem 2012;287:10355–10367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deng X, Chen YX, Zhang X, Zhang JP, Yin C, Yue HY, et al. Hepatic stellate cells modulate the differentiation of bone marrow mesenchymal stem cells into hepatocyte-like cells. J Cell Physiol 2008;217:138–144

    Article  CAS  PubMed  Google Scholar 

  51. Nagai H, Terada K, Watanabe G, Ueno Y, Aiba N, Shibuya T, et al. Differentiation of liver epithelial (stem-like) cells into hepatocytes induced by coculture with hepatic stellate cells. Biochem Biophys Res Commun 2002;293:1420–1425

    Article  CAS  PubMed  Google Scholar 

  52. Wang Y, Yao HL, Cui CB, Wauthier E, Barbier C, Costello MJ, et al. Paracrine signals from mesenchymal cell populations govern the expansion and differentiation of human hepatic stem cells to adult liver fates. Hepatology 2010;52:1443–1454

    Article  PubMed  PubMed Central  Google Scholar 

  53. Evarts RP, Hu Z, Fujio K, Marsden ER, Thorgeirsson SS. Activation of hepatic stem cell compartment in the rat: role of transforming growth factor alpha, hepatocyte growth factor, and acidic fibroblast growth factor in early proliferation. Cell Growth Differ 1993;4:555–561

    CAS  PubMed  Google Scholar 

  54. Ishikawa T, Factor VM, Marquardt JU, Raggi C, Seo D, Kitade M, et al. Hepatocyte growth factor/c-met signaling is required for stem-cell-mediated liver regeneration in mice. Hepatology 2012;55:1215–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Parekkadan B, van Poll D, Megeed Z, Kobayashi N, Tilles AW, Berthiaume F, et al. Immunomodulation of activated hepatic stellate cells by mesenchymal stem cells. Biochem Biophys Res Commun 2007;363:247–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chobert MN, Couchie D, Fourcot A, Zafrani ES, Laperche Y, Mavier P, et al. Liver precursor cells increase hepatic fibrosis induced by chronic carbon tetrachloride intoxication in rats. Lab Invest 2012;92:135–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kuramitsu K, Sverdlov DY, Liu SB, Csizmadia E, Burkly L, Schuppan D, et al. Failure of fibrotic liver regeneration in mice is linked to a severe fibrogenic response driven by hepatic progenitor cell activation. Am J Pathol 2013;183:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tirnitz-Parker JE, Olynyk JK, Ramm GA. Role of TWEAK in coregulating liver progenitor cell and fibrogenic responses. Hepatology 2014;59:1198–1201

    Article  CAS  PubMed  Google Scholar 

  59. Chen HN, Wang DJ, Ren MY, Wang QL, Sui SJ. TWEAK/Fn14 promotes the proliferation and collagen synthesis of rat cardiac fibroblasts via the NF-small ka, CyrillicB pathway. Mol Biol Rep 2012;39:8231–8241

    Article  CAS  PubMed  Google Scholar 

  60. Issa R, Zhou X, Trim N, Millward-Sadler H, Krane S, Benyon C, et al. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration. FASEB J 2003;17:47–49

    CAS  PubMed  Google Scholar 

  61. Kallis YN, Robson AJ, Fallowfield JA, Thomas HC, Alison MR, Wright NA, et al. Remodelling of extracellular matrix is a requirement for the hepatic progenitor cell response. Gut 2011;60:525–533

    Article  CAS  PubMed  Google Scholar 

  62. Cardinale V, Wang Y, Carpino G, Cui CB, Gatto M, Rossi M, et al. Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology 2011;54:2159–2172

    Article  CAS  PubMed  Google Scholar 

  63. Paku S, Nagy P, Kopper L, Thorgeirsson SS. 2-Acetylaminofluorene dose-dependent differentiation of rat oval cells into hepatocytes: confocal and electron microscopic studies. Hepatology 2004;39:1353–1361

    Article  CAS  PubMed  Google Scholar 

  64. Seki E, Schwabe RF. Hepatic inflammation and fibrosis: Functional links and key pathways. Hepatology 2015;61:1066–1079

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sica A, Invernizzi P, Mantovani A. Macrophage plasticity and polarization in liver homeostasis and pathology. Hepatology 2014;59:2034–2042

    Article  PubMed  Google Scholar 

  66. Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S, et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 2011;53:2003–2015

    Article  CAS  PubMed  Google Scholar 

  67. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005;115:56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 2013;58:1461–1473

    Article  CAS  PubMed  Google Scholar 

  69. Xiang S, Dong HH, Liang HF, He SQ, Zhang W, Li CH, et al. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat. PLoS ONE 2012;7:e35180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bird TG, Lu WY, Boulter L, Gordon-Keylock S, Ridgway RA, Williams MJ, et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc Natl Acad Sci USA 2013;110:6542–6547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Van Hul N, Lanthier N, Suner RE, Quinones JA, van Rooijen N, Leclercq I. Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver injury. Am J Pathol 2011;179:1839–1850

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This study was supported by The National Natural Science Foundation of China, Nos. 81570555 and 81270506.

Author contributions

Shang H and Wang Z are responsible for collecting the literature and preparing initial manuscript; Song Y conceived the study and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhu Song.

Ethics declarations

Conflict of interest

Haitao Shang, Zhijun Wang and Yuhu Song declare that they have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Wang, Z. & Song, Y. Liver progenitor cells-mediated liver regeneration in liver cirrhosis. Hepatol Int 10, 440–447 (2016). https://doi.org/10.1007/s12072-015-9693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-015-9693-2

Keywords

Navigation