Skip to main content
Log in

Effect of Contralateral Acoustic Stimulation on Temporal Processing Abilities in Individuals with Normal Hearing

  • Original Article
  • Published:
Indian Journal of Otolaryngology and Head & Neck Surgery Aims and scope Submit manuscript

Abstract

The aim of the article was to compare the conditions of silent and contralateral noise on the temporal processing parameters. A total of 40 participants (20 males and 20 females) were enrolled in the study with a mean age of 21.7 years, participants with normal hearing thresholds and no history of middle ear pathology were enrolled for the study. The temporal processing tests such as duration discrimination test, gap detection test, and temporal modulation transfer function tests were carried out in these 40 individuals in the two conditions of silent and contralateral noise using MATLAB. Statistical analysis was carried out using the SPSS version 25.0 were descriptive and inferential statistics were carried out. Data was normally distributed on the Shapiro–Wilk’s test of normality due to which a paired t test was carried out to establish the nature of significance between the silent and contralateral noise condition. Results reveal the presence of significant difference (p < 0.01) between the groups for all the parameters of temporal resolution with contralateral noise condition performing better than silent condition for the parameters. There is a positive effect of the efferent auditory pathway on the temporal resolution parameters thus implying that speech perception in noise is improved in the presence of background noise for normal hearing individuals due to this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hill JC, Prasher DK, Luxon LM (1997) Evidence for efferent effects on auditory afferent activity, and their functional relevance. Clin Otolaryngol Allied Sci 22(5):394–402

    Article  CAS  PubMed  Google Scholar 

  2. Berlin CI, Hood LJ, Ricci A (eds) (2002) Hair cell micromechanics and otoacoustic emissions. Delmar Learning, New York

    Google Scholar 

  3. Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16(1):325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol 19(5):424–437

    Article  CAS  PubMed  Google Scholar 

  5. Fex J (1959) Augmentation of cochlear microphonic by stimulation of efferent fibres to the cochlea; preliminary report. Acta Otolaryngol 50:540–541

    Article  CAS  PubMed  Google Scholar 

  6. Puel JL, Rebillard G (1990) Effect of contralateral sound stimulation on the distortion product 2 F 1− F 2: evidence that the medial efferent system is involved. J Acoust Soc Am 87(4):1630–1635

    Article  CAS  PubMed  Google Scholar 

  7. Giraud AL, Collet L, Chéry-Croze S, Magnan J, Chays A (1995) Evidence of a medial olivocochlear involvement in contralateral suppression of otoacoustic emissions in humans. Brain Res 705(1–2):15–23

    Article  CAS  PubMed  Google Scholar 

  8. Guinan JJ, Backus BC, Lilaonitkul W, Aharonson V (2003) Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs. J Assoc Res Otolaryngol 4(4):521–540

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burguetti FAR, Carvallo RMM (2008) Efferent auditory system: its effect on auditory processing. Revista Brasileira de Otorrinolaringologia 74:737–745

    Article  PubMed  Google Scholar 

  10. Dolan DF, Guo MH, Nuttall AL (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J Acoust Soc Am 102(6):3587–3596

    Article  CAS  PubMed  Google Scholar 

  11. Quaranta N, Scaringi A, Nahum S, Quaranta A (2005) Effects of efferent acoustic reflex activation on psychoacoustical tuning curves in humans. Acta Otolaryngol 125(5):520–523

    Article  PubMed  Google Scholar 

  12. Giraud AL, Garnier S, Micheyl C, Lina G, Chays A, Chéry-Croze S (1997) Auditory efferents involved in speech-in-noise intelligibility. NeuroReport 8(7):1779–1783

    Article  CAS  PubMed  Google Scholar 

  13. Kumar UA, Vanaja CS (2004) Functioning of olivocochlear bundle and speech perception in noise. Ear Hear 25(2):142–146

    Article  PubMed  Google Scholar 

  14. Mertes IB, Johnson KM, Dinger ZA (2019) Olivocochlear efferent contributions to speech-in-noise recognition across signal-to-noise ratios. J Acoust Soc Am 145(3):1529–1540

    Article  PubMed  Google Scholar 

  15. Wagner W, Frey K, Heppelmann G, Plontke SK, Zenner HP (2008) Speech-in-noise intelligibility does not correlate with efferent olivocochlear reflex in humans with normal hearing. Acta Otolaryngol 128(1):53–60

    Article  PubMed  Google Scholar 

  16. Yashaswini L, Maruthy S (2019) The influence of efferent inhibition on speech perception in noise: A revisit through its level-dependent function. Am J Audiol 28(2S):508–515

    Article  CAS  PubMed  Google Scholar 

  17. Giraud AL, Collet L, Chéry-Croze S (1997) Suppression of otoacoustic emission is unchanged after several minutes of contralateral acoustic stimulation. Hear Res 109(1–2):78–82

    Article  CAS  PubMed  Google Scholar 

  18. Müller J, Janssen T, Heppelmann G, Wagner W (2005) Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans. J Acoust Soc Am 118(6):3747–3756

    Article  PubMed  Google Scholar 

  19. van Zyl A, Swanepoel D, Hall III JW (2009) Effect of prolonged contralateral acoustic stimulation on transient evoked otoacoustic emissions

  20. Delphi M, Tahaei SAA (2010) The effect of contralateral noise stimulation on difference limen for intensity. Bimonthly Audiol Tehran Univ Med Sci 19(1):50–56

    Google Scholar 

  21. Carmichael ME, Hall SE, Phillips DP (2008) Ear and contralateral masker effects on auditory temporal gap detection thresholds. Hear Res 245(1–2):18–23

    Article  PubMed  Google Scholar 

  22. Moore BC (2014) Auditory processing of temporal fine structure: Effects of age and hearing loss. World Scientific, Singapore

    Book  Google Scholar 

  23. Carhart R, Jerger JF (1959) Preferred method for clinical determination of pure-tone thresholds. J Speech Hear Disord 24(4):330–345

    Article  Google Scholar 

  24. Yathiraj A, Vijayalakshmi CS (2005) Phonemically balanced word list in Kannada: developed in department of audiology. AIISH, Mysore

    Google Scholar 

  25. Schwartz J, Tallal P (1980) Rate of acoustic change may underlie hemispheric specialization for speech perception. Science 207(4437):1380–1381

    Article  CAS  PubMed  Google Scholar 

  26. Creese I (1999) Rate processing constraints may underlie developmental language impairments and also hemispheric specialization for speech. Brain Res Bull 50(5–6):431–432

    Article  CAS  PubMed  Google Scholar 

  27. Lorenzi C, Wable J, Moroni C, Derobert C, Frachet B, Belin C (2000) Auditory temporal envelope processing in a patient with left-hemisphere damage. Neurocase 6(3):231–244

    Article  Google Scholar 

  28. Grassi M, Soranzo A (2009) MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimation. Behav Res Methods 41(1):20–28

    Article  PubMed  Google Scholar 

  29. Green DM (1990) Stimulus selection in adaptive psychophysical procedures. J Acoust Soc Am 87(6):2662–2674

    Article  CAS  PubMed  Google Scholar 

  30. Green DM (1993) A maximum-likelihood method for estimating thresholds in a yes–no task. J Acoust Soc Am 93(4):2096–2105

    Article  CAS  PubMed  Google Scholar 

  31. Prakash P, Jayan A, Prabhu P (2021) Effects of diurnal changes on temporal processing in morning-type and evening-type individuals with normal hearing. Eur Arch Oto-Rhino-Laryngol 1–7

  32. Nie NH, Bent DH, Hull CH (1975) SPSS: Statistical package for the social sciences, vol 227. McGraw-Hill, New York

    Google Scholar 

  33. Fitzgibbons PJ, Wightman FL (1979) Temporal resolution in normal and hearing-impaired listeners. J Acoust Soc Am 65(S1):S133–S133

    Article  Google Scholar 

  34. Musiek FE, Chermak GD (eds) (2013) Handbook of central auditory processing disorder, volume I: auditory neuroscience and diagnosis, vol 1. Plural Publishing, San Diego

    Google Scholar 

  35. Reite M, Adams M, Simon J, Teale P, Sheeder J, Richardson D, Grabbe R (1994) Auditory M100 component 1: relationship to Heschl’s gyri. Cogn Brain Res 2(1):13–20

    Article  CAS  Google Scholar 

  36. Gage N, Roberts TP, Hickok G (2006) Temporal resolution properties of human auditory cortex: reflections in the neuromagnetic auditory evoked M100 component. Brain Res 1069(1):166–171

    Article  CAS  PubMed  Google Scholar 

  37. Ciuman RR (2010) The efferent system or olivocochlear function bundle–fine regulator and protector of hearing perception. Int J Biomed Sci IJBS 6(4):276

    PubMed  Google Scholar 

  38. Moore BC (1978) Psychophysical tuning curves measured in simultaneous and forward masking. J Acoust Soc Am 63(2):524–532

    Article  CAS  PubMed  Google Scholar 

  39. Kuhn A, Saunders JC (1980) Psychophysical tuning curves in the parakeet: a comparison between simultaneous and forward masking procedures. J Acoust Soc Am 68(6):1892–1894

    Article  Google Scholar 

  40. Umashankar A, Ranganathan L, Chandrasekaran P, Prabhu P (2021) Threshold of octave masking as a tool to explain cochlear nonlinearity. Auditory Vestibular Res 30(1):24–32

    Google Scholar 

  41. Moore BC (2008) Effects of activation of the efferent system on psychophysical tuning curves as a function of signal frequency. Hear Res 240(1–2):93–101

    PubMed  Google Scholar 

  42. Aguilar E, Eustaquio-Martin A, Lopez-Poveda EA (2013) Contralateral efferent reflex effects on threshold and suprathreshold psychoacoustical tuning curves at low and high frequencies. J Assoc Res Otolaryngol 14(3):341–357

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maruthy S, Kumar UA, Gnanateja GN (2017) Functional interplay between the putative measures of rostral and caudal efferent regulation of speech perception in noise. J Assoc Res Otolaryngol 18(4):635–648

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gummer M, Yates GK, Johnstone BM (1988) Modulation transfer function of efferent neurones in the guinea pig cochlea. Hear Res 36(1):41–51

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashanth Prabhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, P., Sreedhar, A., Umashankar, A. et al. Effect of Contralateral Acoustic Stimulation on Temporal Processing Abilities in Individuals with Normal Hearing. Indian J Otolaryngol Head Neck Surg 75, 685–691 (2023). https://doi.org/10.1007/s12070-022-03420-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12070-022-03420-7

Keywords

Navigation