Skip to main content

Advertisement

Log in

Multi-objective optimum design of propellers using the blade element theory and evolutionary algorithms

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

A multi-objective optimum design of propellers is presented. Traditionally, the definition of propellers is done by choosing models that already exist on the market. However, with the advancement of technologies such as 3D printing and computer numerical control, the possibility for the designer to seek an optimized propeller for his design is increasingly feasible. In this scenario, this paper aims to propose a methodology that allows the designer to find alternative propeller designs. The methodology comprises the creation, refinement, and extension of an airfoil database available from the literature. The aerodynamic analysis uses the blade element theory and the optimization with evolutionary algorithms. Seven multi-objective constrained optimization problems were formulated, with two, three, and four conflicting objective functions concerning the propeller aerodynamic and geometric information, such as the thrust coefficient, the bending coefficient, the efficiency, and the volume of the propeller. Among them, for instance, two proposed formulations are: (i) maximizing the thrust and minimizing the bending coefficients simultaneously, (ii) maximizing the thrust coefficient, minimizing the bending coefficient, minimizing the volume of the propeller, and minimizing the efficiency simultaneously. The experiments analyzed the optimization of small propellers for two different engines, combustion and electric brushless. Five evolutionary algorithms were used to solve these problems, and solutions were extracted from the Pareto fronts using multi-criteria decision-making according to the decision-maker preferences. Finally, the complete data of the extracted solutions are provided, such as dimensions, angles, shapes, and performance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56

Similar content being viewed by others

References

  1. Torenbeek E (2013) Synthesis of subsonic airplane design: an introduction to the preliminary design of subsonic general aviation and transport aircraft, with emphasis on layout, aerodynamic design, propulsion and performance. Springer

  2. Panichella A (2019) An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization. In: Proceedings of the genetic and evolutionary computation conference. p 595–603

  3. Tian Y, Cheng R, Zhang X, Cheng F, Jin Y (2017) An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans Evol Comput 22(4):609–622

    Article  Google Scholar 

  4. Hughes EJ (2007) Msops-ii: a general-purpose many-objective optimiser. In: 2007 IEEE congress on evolutionary computation. p 3944–3951

  5. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: Nsga-ii. In: International conference on parallel problem solving from nature. p 849–858. Springer

  6. Pan L, Wenting X, Li L, He C, Cheng R (2021) Adaptive simulated binary crossover for rotated multi-objective optimization. Swarm Evol Comput 60:100759

    Article  Google Scholar 

  7. Tian Y, Cheng R, Zhang X, Jin Y (2017) Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput Intell Mag 12(4):73–87

    Article  Google Scholar 

  8. Wang Z, Dou J, Qi S (2023) Application research of piston wind and vertical axis wind turbine in the subway tunnel. J Phys Conf Ser 2418:012072

    Article  Google Scholar 

  9. IPCC (1999) Special report on aviation and the global atmosphere

  10. Rankine WJM (1865) On the mechanical principles of the action of propellers. Trans Inst Naval Arch 6:13–39

    Google Scholar 

  11. Froude RE (1889) On the part played in propulsion by differences of fluid pressure. Trans Inst Naval Arch 30:390

    Google Scholar 

  12. Drzewiecki S (1920) Théorie générale de l’hélice: hélices aériennes et hélices marines. Gauthier-Villars, Paris

    MATH  Google Scholar 

  13. Glauert H (1983) The elements of aerofoil and airscrew theory, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  14. Theodorsen T (1948) Theory of propellers, 1st edn. McGraw-Hill, New York

    MATH  Google Scholar 

  15. Larrabee EE (1975) Propellers of minimum induced loss, and water tunnel tests of such a propeller. In: Proceedings of the NASA, Industry, University, General aviation drag reduction workshop. p 273–293, Lawrence, Kansas, 1975. NASA Conference Publication. Relatório 76N 11018

  16. Larrabee EE, French SE (1983) Minimum induced loss windmills and propellers. J Wind Eng Ind Aerodyn 15:317–327

    Article  Google Scholar 

  17. Adkins CN, Liebeck RH (1983) Design of optimum propellers. In: AIAA 21st aerospace sciences meeting. p 9, Reno. AIAA Aviation

  18. Drela M (2007) Qprop user guide

  19. Drela M, Giles MB (1987) Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J 25(10):1347–1355

    Article  MATH  Google Scholar 

  20. MDrela M, Youngren H (2001) Xfoil 6.94 user guide

  21. Wald QR (2006) The aerodynamics of propellers. Progr Aerospace Sci 42(2):85–128

    Article  MathSciNet  Google Scholar 

  22. Sodja J, Stadler D, Kosel T (2012) Computational fluid dynamics analysis of an optimized load-distribution propeller. J Aircr 49(3):955–961

    Article  Google Scholar 

  23. Loureiro EV, Oliveira NL, Hallak PH, de Souza Bastos F, Rocha LM, Delmonte RG, de Castro Lemonge AC (2021) Evaluation of low fidelity and cfd methods for the aerodynamic performance of a small propeller. Aerosp Sci Technol 108:106402

    Article  Google Scholar 

  24. Malki R, Williams AJ, Croft TN, Togneri M, Masters I (2013) A coupled blade element momentum-computational fluid dynamics model for evaluating tidal stream turbine performance. Appl Math Model 37(5):3006–3020

    Article  MathSciNet  MATH  Google Scholar 

  25. Bahrami S, Tribes C, Devals C, Vu TC, Guibault F (2016) Multi-fidelity shape optimization of hydraulic turbine runner blades using a multi-objective mesh adaptive direct search algorithm. Appl Math Model 40(2):1650–1668

    Article  MathSciNet  MATH  Google Scholar 

  26. Witkowski DP, Lee AKH, Sullivan JP (1989) Aerodynamic interaction between propellers and wings. J Aircraft 26(9):829–836

    Article  Google Scholar 

  27. Brandt J, Selig M (2011) Propeller performance data at low reynolds numbers. In: 49th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. P 1255

  28. Selig M (2020) UIUC Airfoil coordinates database. Accessed 12 Sept 2020. https://m-selig.ae.illinois.edu/ads/coord_database.html

  29. Deters RW, Ananda Krishnan GK, Selig MS (2014) Reynolds number effects on the performance of small scale propellers. In: Proceedings of the 32nd AIAA applied aerodynamics conference

  30. Pulliam T, Nemec M, Holst T, Zingg D (2003) Comparison of evolutionary (genetic) algorithm and adjoint methods for multi-objective viscous airfoil optimizations. In: 41st Aerospace sciences meeting and exhibit, p 298

  31. Kanazaki M, Tanaka K, Jeong S, Yamamoto K (2006) Multi-objective aerodynamic optimization of elements’ setting for high-lift airfoil using kriging model. In: 44th AIAA Aerospace sciences meeting and exhibit. p1471

  32. Parashar S, Pediroda V, Poloni C (2008) Self organizing maps (som) for design selection in robust multi-objective design of aerofoil. In: 46th AIAA aerospace sciences meeting and exhibit. p 914

  33. Cameron L, Early J, McRoberts R (2011) Metamodel assisted multi-objective global optimisation of natural laminar flow aerofoils. In: 29th AIAA applied aerodynamics conference. p 3001

  34. Benini E, Ponza R, Massaro A (2011) High-lift multi-element airfoil shape and setting optimization using multi-objective evolutionary algorithms. J Aircr 48(2):683–696

    Article  Google Scholar 

  35. Ribeiro AFP, Awruch AM, Gomes HM (2012) An airfoil optimization technique for wind turbines. Appl Math Model 36(10):4898–4907

    Article  Google Scholar 

  36. Qiu S, Song W, Liu H (2012) Multi-objective optimization of airfoil trailing edge noise with three different measures. In: 18th AIAA/CEAS aeroacoustics conference (33rd AIAA aeroacoustics conference). p 2182

  37. Koziel S, Leifsson LT (2014) Multi-objective airfoil design using variable-fidelity cfd simulations and response surface surrogates. In: 10th AIAA Multidisciplinary design optimization conference. p 0289

  38. Kovačević A, Svorcan J, Sakib Hasan M, Ivanov T, Jovanović M (2021) Optimal propeller blade design, computation, manufacturing and experimental testing. Aircraft Eng Aerosp Technol. 93:1323

    Article  Google Scholar 

  39. Chang LK, Sullivan JP (1984) Optimization of propeller blade twist by an analytical method. AIAA J 22(2):252–255

    Article  MATH  Google Scholar 

  40. Cho J, Lee S-C (1998) Propeller blade shape optimization for efficiency improvement. Comput Fluids 27(3):407–419

    Article  MATH  Google Scholar 

  41. Gur O, Rosen A (2009) Optimization of propeller based propulsion system. J Aircr 46(1):95–106

    Article  Google Scholar 

  42. Gur O, Rosen A (2009) Design of quiet propeller for an electric mini unmanned air vehicle. J Propul Power 25(3):717–728

    Article  Google Scholar 

  43. Dorfling J, Rokhsaz K (2015) Constrained and unconstrained propeller blade optimization. J Aircr 52(4):1179–1188

    Article  Google Scholar 

  44. Goldstein S (1929) On the vortex theory of screw propellers. Proc R Soc London Ser A Contain Papers Math Phys Charact 123(792):440–465

    MATH  Google Scholar 

  45. Schatz ME, Hermanutz A, Baier HJ (2017) Multi-criteria optimization of an aircraft propeller considering manufacturing. Struct Multidiscip Optim 55(3):899–911

    Article  Google Scholar 

  46. Toman UT, Hassan AKSO, Owis FM, Mohamed ASA (2019) Blade shape optimization of an aircraft propeller using space mapping surrogates. Adv Mech Eng 11(7):1687814019865071

    Article  Google Scholar 

  47. Alshahrani A (2020) Analysis and initial optimization of the propeller design for small, hybrid-electric propeller aircraft. PhD thesis, Aeronautical and Vehicle Engineering KTH Royal Institute of Technology, Stockholm, Sweden

  48. Pagano A, Federico L, Barbarino M, Guida F, Aversano M (2008) Multi-objective aeroacoustic optimization of an aircraft propeller. In: 12th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 6059

  49. Marinus B, Roger M, Van Den Braembussche R (2010) Aeroacoustic and aerodynamic optimization of aircraft propeller blades. In: 16th AIAA/CEAS aeroacoustics conference, p 3850

  50. MacNeill R, Verstraete D (2018) Optimal propellers for a small hybrid electric fuel-cell uas. In: 2018 AIAA/IEEE electric aircraft technologies symposium (EATS), p 1–16. IEEE

  51. Slavik S, Klesa J, Brabec J (2020) Propeller selection by means of pareto-optimal sets applied to flight performance. Aerospace 7(3):21

    Article  Google Scholar 

  52. Ganesan T, Aris MS, Vasant P (2018) Extreme value metaheuristics for optimizing a many-objective gas turbine system. Int J Energy Optim Eng 7(2):76–96

    Google Scholar 

  53. Gul M, Kalam MA, Mujtaba MA, Alam S, Bashir MN, Javed I, Aziz U, Farid MR, Hassan MT, Iqbal S (2020) Multi-objective-optimization of process parameters of industrial-gas-turbine fueled with natural gas by using grey-taguchi and ann methods for better performance. Energy Rep 6:2394–2402

    Article  Google Scholar 

  54. Sadeghi M, Chitsaz A, Marivani P, Yari M, Mahmoudi SMS (2020) Effects of thermophysical and thermochemical recuperation on the performance of combined gas turbine and organic rankine cycle power generation system: thermoeconomic comparison and multi-objective optimization. Energy 210:118551

    Article  Google Scholar 

  55. Ding X, Sun W, Harrison GP, Lv X, Weng Y (2020) Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid. Energy 213:118804

    Article  Google Scholar 

  56. Glauert H (1935) Airplane propellers. Aerodynamic theory. Springer, pp 169–360

  57. Theodore T (1948) Theory of propellers. McGraw-Hill Book Company

  58. Drela M (2014) Flight vehicle aerodynamics. MIT press

  59. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite, vol method. Pearson Education

  60. Wall D (2012) Optimum propeller design for electric UAVS. PhD thesis, Auburn University

  61. Gur O, Rosen A (2005) Propeller performance at low advance ratio. J Aircr 42(2):435–441

    Article  Google Scholar 

  62. Drela M (2006) Qprop theory document. https://web.mit.edu/drela/Public/Qprop

  63. Morgado JP (2020) Guidelines jblade v5.17. Accessed 12 Sept 2020. https://sites.google.com/site/joaomorgado23/downloads

  64. Silvestre MA, Morgado JP, Pascoa J (2013) Jblade: a propeller design and analysis code. In: 2013 International powered lift conference, p 4220

  65. Marten D (2012) Qblade guidelines

  66. Hepperle M (2010) Javaprop users guide. Technical report

  67. Adkins CN, Liebeck RH (1994) Design of optimum propellers. J Propuls Power 10(5):676–682

    Article  Google Scholar 

  68. Hepperle M (2020) Java prop website. Accessed 12 Sept 2020. https://www.mh-aerotools.de/airfoils/javaprop.htm

  69. Deperrois A (2009) Xflr5 analysis of foils and wings operating at low reynolds numbers. Guidelines for XFLR5, p 142

  70. D’Errico J (2012) Interparc function. MATLAB Central file exchange

  71. Parreiras RO, Vasconcelos JA (2009) Decision making in multiobjective optimization aided by the multicriteria tournament decision method. Nonlinear Anal Theory Methods Appl 71(12):e191–e198

    Article  MathSciNet  MATH  Google Scholar 

  72. Angelo JS, Bernardino HS, Barbosa HJC (2015) Ant colony approaches for multiobjective structural optimization problems with a cardinality constraint. Adv Eng Softw 80:101–115

    Article  Google Scholar 

  73. Lemonge ACC, Carvalho JPG, Hallak PH, Vargas DEC (2021) Multi-objective truss structural optimization considering natural frequencies of vibration and global stability. Expert Syst Appl 165:113777

    Article  Google Scholar 

  74. Carvalho JPG, Carvalho ÉCR, Vargas DEC, Hallak PH, Lima BSLP, Lemonge ACC (2021) Multi-objective optimum design of truss structures using differential evolution algorithms. Comput Struct 252:106544

    Article  Google Scholar 

  75. OS Engines (2001) Manual: max-61sx-h ring wc

  76. H Hobby Inc. (2013) Manual - e-flite power 60 brushless outrunner motor

  77. Li M, Zhen L, Yao X (2017) How to read many-objective solution sets in parallel coordinates [educational forum]. IEEE Comput Intell Mag 12(4):88–100

    Article  Google Scholar 

  78. Sierra MR, Coello Coello CA (2005) Improving pso-based multi-objective optimization using crowding, mutation and\(\epsilon\)-dominance. In: International conference on evolutionary multi-criterion optimization, pages 505–519. Springer

  79. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257–271

    Article  Google Scholar 

  80. Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. PhD thesis, Massachusetts Institute of Technology

  81. Hughes EJ (2003) Multiple single objective pareto sampling. In: The 2003 Congress on evolutionary computation. CEC’03., volume 4, p 2678–2684. IEEE

Download references

Acknowledgements

The authors wish to thank to CAPES (Finance Code 001), CNPq (Grants 308105/2021-4 and 303221/2022-4), and FAPEMIG (Grants TEC PPM-00174-18 and APQ-00869-22) for their support.

Author information

Authors and Affiliations

Authors

Contributions

NLO: computational implementation, modeling of the numerical experiments, analysis of results, methodology, validation, writing. MARM: analysis of the results, supervision, methodology, validation, and review. ACCL: corresponding author, supervision, optimization and modeling of the numerical experiments, writing, review, and editing. PHH: supervision, conceptualization, aerodynamics, formal analysis, writing, review, and editing.

Corresponding author

Correspondence to Afonso Celso de Castro Lemonge.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Performance indicators

Appendix: Performance indicators

See Tables 12, 13, 14, 15, 16, 17, 18, 19.

Table 12 IGD—OS
Table 13 HV—OS
Table 14 Feasible rate—OS
Table 15 Spacing—OS
Table 16 IGD—BL
Table 17 HV—BL
Table 18 Feasible rate—BL
Table 19 Spacing—BL

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, N.L., Rendón, M.A., Lemonge, A.C.d.C. et al. Multi-objective optimum design of propellers using the blade element theory and evolutionary algorithms. Evol. Intel. (2023). https://doi.org/10.1007/s12065-023-00855-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12065-023-00855-x

Keywords

Navigation