Skip to main content
Log in

Fuzzy integrated salp swarm algorithm-based RideNN for prostate cancer detection using histopathology images

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

One of the dreadful diseases in the medical industry is prostate cancer and it is growing at a higher rate among men. Hence, it is a necessity to detect cancer in an early stage due to the alarming increase in the reports. Various techniques are introduced for effective prostate cancer detection using histopathology images. Accordingly, an automatic method is proposed for segmenting and classifying prostate cancer. This paper presents the prostate cancer detection method using histopathology images by proposing the fuzzy-based salp swarm algorithm-based rider neural network (SSA-RideNN) classifier. At first, the input image is fed to the pre-processing step and then the segmentation is performed using Color Space transformation and thresholding. Once the segmentation is performed, the feature extraction is done by extracting multiple kernel scale invariant feature transform features along with the texture features that are extracted based on local optimal oriented pattern descriptor to improve the classification accuracy. Finally, the prostate cancer detection is done based on the proposed fuzzy-based SSA-RideNN, which is developed by integrating fuzzy approach with SSA-RideNN. The performance of the proposed fuzzy-based SSA-RideNN is analyzed using sensitivity, specificity, and accuracy. The proposed fuzzy-based SSA-RideNN produces the maximum accuracy of 0.9190, a maximum sensitivity of 0.9084, and maximum specificity of 0.9, indicating its superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SSA-RideNN:

Salp swarm algorithm-based rider neural network

CS:

Color Space

MK-SIFT:

Multiple kernel scale invariant feature transform

LOOP:

Local optimal oriented pattern

WSI:

Whole slide imaging

PSA:

Prostate-specific antigen

SVM:

Support vector machine

ANN:

Artificial neural network

mpMRI:

Multiparametric magnetic resonance imaging

MCIL:

Multiple clustered instance learning

CNN:

Convolutional neural network

LBP:

Local binary pattern

LDP:

Local directional pattern

NN:

Neural network

ROA:

Rider optimization algorithm

MSE:

Mean square error

DBN:

Deep belief neural network

References

  1. Ren J, Sadimin E, Foran DJ, Qi X (2017) Computer aided analysis of prostate histopathology images to support a refined Gleason grading system. In: International society for optics and photonics, vol 10133, p 101331V

  2. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  Google Scholar 

  3. De Re V, Caggiari L, De Zorzi M, Talamini R, Racanelli V, D’Andrea M, Buonadonna A, Zagonel V, Cecchin E, Innocenti F, Toffoli G (2014) Genetic diversity of the KIR/HLA system and outcome of patients with metastatic colorectal cancer treated with chemotherapy. PLoS ONE 9(1):1–10

    Google Scholar 

  4. Jalalian SH, Ramezani M, Jalalian SA, Abnous K, Taghdisi SM (2019) Exosomes, new biomarkers in early cancer detection. Anal Biochem 571:1–13

    Article  Google Scholar 

  5. Nair M, Sandhu SS, Sharma AK (2018) Cancer molecular markers: a guide to cancer detection and management. Semin Cancer Biol 52:39–55

    Article  Google Scholar 

  6. World Health Organization. http://www.who.int/topics/globalburdenofdisease/en. Accessed on March 2019

  7. Ferrucci A, Moschetta M, Frassanito MA, Berardi S, Catacchio I, Ria R, Racanelli V, Caivano A, Solimando AG, Vergara D, Maffia M, Latorre D, Rizzello A, Zito A, Ditonno P, Maiorano E, Ribatti D, Vacca A (2014) A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin Cancer Res 20(22):5796–5807

    Article  Google Scholar 

  8. Roy S, Kumar Jain A, Lal S, Kini J (2018) A study about color normalization methods for histopathology images. Micron 114:42–61

    Article  Google Scholar 

  9. Xu Y, Zhu J-Y, Chang EI-C, Lai M, Tu Z (2014) Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal 18:591–604

    Article  Google Scholar 

  10. Johnson DC, Raman SS, Mirak SA, Kwan L, Bajgiran AM, Hsu W, Maehara CK, Ahuja P, Faiena I, Pooli A, Salmasi A, Sisk A, Felker ER, Lu DSK, Reiter RE (2019) Detection of individual prostate cancer foci via multiparametric magnetic resonance imaging. Eur Urol 75(5):712–720

    Article  Google Scholar 

  11. Wang Y, Wang D, Geng N, Wang Y, Yin Y, Jin Y (2019) Stacking-based ensemble learning of decision trees for interpretable prostate cancer detection. Appl Soft Comput 77:188–204

    Article  Google Scholar 

  12. Nguyen K, Sarkar A, Jain A (2014) Prostate cancer grading: use of graph cut and spatial arrangement of nuclei. IEEE Trans Med Imag 33(12):2254–2270

    Article  Google Scholar 

  13. Campa R, Del Monte M, Barchetti G, Pecoraro M, Salvo V, Ceravolo I, Indino EL, Ciardi A, Catalano C, Panebianco V (2019) Improvement of prostate cancer detection combining a computer-aided diagnostic system with TRUS-MRI targeted biopsy. Abdom Radiol 44(1):264–271

    Article  Google Scholar 

  14. Ström P, Nordström T, Aly M, Egevad L, Grönberg H, Eklund M (2018) The Stockholm-3 model for prostate cancer detection: algorithm update, biomarker contribution, and reflex test potential. Eur Urol 74(2):204–210

    Article  Google Scholar 

  15. De Angelis R, Sant M, Coleman MP, Francisci S, Baili P, Pierannunzio D, Trama A, Visser O, Brenner H, Ardanaz E, Bielska-Lasota M (2014) Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE-5—a population-based study. Lancet Oncol 15(1):23–34

    Article  Google Scholar 

  16. Wu D, Ni J, Beretov J, Cozzi P, Willcox M, Wasinger V, Walsh B, Graham P, Li Y (2017) Urinary biomarkers in prostate cancer detection and monitoring progression. Crit Rev Oncol/Hematol 118:15–26

    Article  Google Scholar 

  17. Finne P, Finne R, Bangma C, Hugosson J, Hakama M, Auvinen A, Stenman UH (2004) Algorithms based on prostate-specific antigen (PSA), free PSA, digital rectal examination and prostate volume reduce false-positive PSA results in prostate cancer screening. Int J Cancer 111(2):310–315

    Article  Google Scholar 

  18. Bermejo P, Vivo A, Tárraga PJ, Rodríguez-Montes JA (2015) Development of interpretable predictive models for BPH and prostate cancer. Clin Med Insights Oncol 9:CMO-S19739

    Article  Google Scholar 

  19. Vinolin V (2019) Breast cancer detection by optimal classification using GWO algorithm. Multimed Res (MR) 2(2):10–18

    Google Scholar 

  20. Kwak JT, Hewitt SM (2017) Nuclear architecture analysis of prostate cancer via convolutional neural networks. IEEE Access 5:18526–18533

    Article  Google Scholar 

  21. DiFranco M, O’Hurley G, Kay E, Watson W, Cunningham P (2008) Automated Gleason scoring of prostatic histopathology slides using multi-channel co-occurrence texture features. In: Proceedings of international workshop on microscopic image analysis and application biology (MIAAB)

  22. Gertych A, Ing N, Ma Z, Fuchs TJ, Salman S, Mohanty S, Bhele S, Velásquez-Vacca A, Amin MB, Knudsen BS (2015) Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Comput Med Imaging Graph 46:197–208

    Article  Google Scholar 

  23. Nguyen K, Sarkar A, Jain AK (2014) Prostate cancer grading: use of graph cut and spatial arrangement of nuclei. IEEE Trans Med Imaging 33(12):2254–2270

    Article  Google Scholar 

  24. Doyle S, Feldman M, Shihe N, Tomaszewski J, Madabhushi A (2012) Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer. BMC Bioinf 13(1):282

    Article  Google Scholar 

  25. Gecera B, Aksoya S, Mercanb E, Shapirob LG, Weaver DL, Elmored JG (2018) Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks. Pattern Recogn 84:345–356

    Article  Google Scholar 

  26. Nir G, Hor S, Karimi D, Fazli L, Skinnider BF, Tavassoli P, Turbin D, Villamil CF, Wang G, Wilson RS, Iczkowski KA, Lucia MS, Black PC, Abolmaesumi P, Goldenberg SL, Salcudean SE (2018) Automatic grading of prostate cancer in digitized histopathology images: learning from multiple experts. Med Image Anal 50:167–180

    Article  Google Scholar 

  27. Sharma S, Zapatero-Rodríguez J, O’Kennedy R (2017) Prostate cancer diagnostics: clinical challenges and the ongoing need for disruptive and effective diagnostic tools. Biotechnol Adv 35(2):135–149

    Article  Google Scholar 

  28. Gleason DF (1992) Histologic grading of prostate cancer: a perspective. Hum Pathol 23(3):273–279

    Article  Google Scholar 

  29. Mathan Kumar B, PushpaLakshmi R (2018) Multiple kernel scale invariant feature transform and cross indexing for image search and retrieval. Imaging Sci J 66(2):84–97

    Article  Google Scholar 

  30. Chakraborti T, McCane B, Mills S, Pal U (2017) LOOP descriptor: encoding repeated local patterns for fine-grained visual identification of lepidoptera. ArXiv

  31. Abdelbar AM, Abdelshahid S, Wunsch DC (2005) Fuzzy PSO: a generalization of particle swarm optimization. In: Proceedings of IEEE international joint conference on neural networks, vol 2. IEEE, pp 1086–1091

  32. Binu D, Kariyappa BS (2019) RideNN: a new rider optimization algorithm-based neural network for fault diagnosis in analog circuits. IEEE Trans Instrum Meas 68(1):2–26

    Article  Google Scholar 

  33. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  34. National Cancer Institute GDC Data portal. https://portal.gdc.cancer.gov/annotations. Accessed on Nov 2018

  35. Kim JK, Choi MJ, Lee JS, Hong JH, Kim C-S, Seo SI, Jeong CW, Byun S-S, Koo KC, Chung BH, Park YH, Lee JY, Choi IY (2018) A deep belief network and Dempster–Shafer-based multiclassifier for the pathology stage of prostate cancer. J Healthc Eng. https://doi.org/10.1155/2018/4651582

    Article  Google Scholar 

  36. Ubaidillaha SHSA, Sallehuddina R, Alia NA (2013) cancer detection using artificial neural network and support vector machine: a comparative study. J Teknol 65(1):73–81

    Google Scholar 

  37. Gurav SB, Kulhalli KV, Desai VV (2019) Prostate cancer detection using histopathology images and classification using RideNN. Biomed Eng Appl Basis Commun 31(6):1950042

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashidhar B. Gurav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurav, S.B., Kulhalli, K.V. & Desai, V.V. Fuzzy integrated salp swarm algorithm-based RideNN for prostate cancer detection using histopathology images. Evol. Intel. 15, 1329–1342 (2022). https://doi.org/10.1007/s12065-020-00402-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-020-00402-y

Keywords

Navigation