Skip to main content

Advertisement

Log in

Chugging to silent machines: development of mechanical cardiac support

  • Review Article
  • Published:
Indian Journal of Thoracic and Cardiovascular Surgery Aims and scope Submit manuscript

Abstract

The concept of a mechanical device to support failing hearts arose after the introduction of the heart lung bypass machine pioneered by Gibbon. The initial devices were the pulsatile paracorporeal and total artificial heart (TAH), driven by noisy chugging pneumatic pumps. Further development moved in three directions, namely short-term paracorporeal devices, left ventricular assist devices (LVADs), and TAH. The paracorporeal pumps moved in the direction of electrically driven continuous-flow pumps as well as catheter-mounted intracardiac pumps for short-term use. The LVAD became the silent durable electric, implantable continuous-flow pumps. The TAH remains a pneumatically driven pulsatile device with limited application, but newer technology is moving toward electrically operated TAH. The most successful pumps are the durable implantable continuous-flow pumps now taken over by the 3rd-generation pumps for the bridge to transplant and long-term use with significantly improved survival and quality of life. But bleeding including gastrointestinal bleeding, strokes, and percutaneous driveline infections exist as troublesome issues. Available data supports less adverse hemocompatibility of HeartMate 3 LVAD. Eliminations of the driveline will significantly improve the freedom from infections. Restoring physiological pulsatility to continuous-flow pumps is in the pipeline. Development of appropriate right VAD, miniaturization, and pediatric devices is awaited. Poor cost-effectiveness from the cost of LVAD needs to be resolved before mechanical cardiac support becomes universally available as a substitute for heart transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Review article supported by published articles.

References

  1. Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104:2746–53.

    CAS  PubMed  Google Scholar 

  2. Shimokawa H, Miura M, Nochioka K, Sakata Y. Heart failure as a general pandemic in Asia. Eur J Heart Fail. 2015;17:884–92.

    PubMed  Google Scholar 

  3. Pillai HS, Ganapathi S. Heart Failure in South Asia. Curr Cardiol Rev. 2013;9:102–11.

    PubMed  Google Scholar 

  4. Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC. Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation. 1989;80:299–305.

    CAS  PubMed  Google Scholar 

  5. Rogers JG, Aaronson KD, Boyle AJ, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55:1826–34.

  6. Sivathasan C, Lim CP, Kerk KL, Sim DK, Mehra MR. Mechanical circulatory support and heart transplantation in the Asia Pacific region. J Heart Lung Transplant. 2017;36:13–8.

    PubMed  Google Scholar 

  7. Transplant Authority of Tamil Nadu. https://transtan.tn.gov.in/statistics.php Google search: Accessed 18 April 2020.

  8. Gibbon JH Jr. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med. 1954;37:171–85.

    PubMed  Google Scholar 

  9. DeBakey ME. Development of mechanical heart devices. Ann Thorac Surg. 2005;79:S2228–31.

    PubMed  Google Scholar 

  10. Pennock JL, Pierce WS, Campbell DB, et al. Mechanical support of the circulation followed by cardiac transplantation. J Thorac Cardiovasc Surg. 1986;92:994–1004.

    CAS  PubMed  Google Scholar 

  11. Pennington DG, McBride LR, Kanter KR, et al. Bridging to heart transplantation with circulatory support devices. J Heart Transplant. 1989;8:116–23.

    CAS  PubMed  Google Scholar 

  12. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    CAS  PubMed  Google Scholar 

  13. Cooley DA, Liotta D, Hallman GL, et al. Orthotopic cardiac prosthesis for two staged cardiac replacement. Am J Cardiol. 1969;24:723–30.

    CAS  PubMed  Google Scholar 

  14. DeVries WC, Anderson JL, Joyce LD, et al. Clinical use of the total artificial heart. New Engl J Med. 1984;310:273–8.

    CAS  PubMed  Google Scholar 

  15. Copeland JG, Copeland H, Gustafson M, et al. Experience with more than 100 total artificial heart implants. J Thorac Cardiovasc Surg. 2012;143:727–34.

    PubMed  Google Scholar 

  16. Torregrossa G, Morshuis M, Varghese R, et al. Results with SynCardia total artificial heart beyond 1 year. ASAIO J. 2014;60:626–34.

    PubMed  Google Scholar 

  17. Mohacsia P, Leprince P. The CARMAT total artificial heart. Eur J Cardiothorac Surg. 2014;46:933–4.

    Google Scholar 

  18. DeBakey ME, Benkowski R. The DeBakey/NASA Axial Flow Ventricular Assist Device. In: Akutsu T, Koyanagi H, editors. Heart Replacement. Tokyo: Springer; 1998. https://doi.org/10.1007/978-4-431-65921-1_61.

    Chapter  Google Scholar 

  19. Archimedes screw. "Archimedes screw." World Encyclopedia. 2020 https://www.encyclopedia.com. Accessed on 6 May 2020.

  20. Wampler R, Frazier OH. The Hemopump™, The First Intravascular Ventricular Assist Device. ASAIO J. 2019;65:297–300.

    PubMed  Google Scholar 

  21. Lemaire A, Anderson MB, Lee LY, et al. The Impella device for acute mechanical circulatory support in patients in cardiogenic shock. Ann Thorac. Surg. 2014;97:133–8.

    PubMed  Google Scholar 

  22. Frazier OH, Myers TJ, Westaby S, Gregoric ID. Use of the Jarvik 2000 left ventricular assist system as a bridge to heart transplantation or as destination therapy for patients with chronic heart failure. Ann Surg. 2003;237:631–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    CAS  PubMed  Google Scholar 

  24. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    CAS  PubMed  Google Scholar 

  25. John R, Long JW, Massey HT, et al. Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short-term circulatory support. J Thorac Cardiovasc Surg. 2011;141:932–9.

    PubMed  Google Scholar 

  26. Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34:1495–504.

    PubMed  Google Scholar 

  27. Aaronson KD, Slaughter MS, Miller LW, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. HeartWare Ventricular Assist Device (HVAD) Bridge to Transplant ADVANCE Trial Investigators. Circulation. 2012;125:3191–200.

    PubMed  Google Scholar 

  28. Kirklin JK, Naftel DC, Stevenson LW, et al. INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant. 2008;27:1065–72.

    PubMed  Google Scholar 

  29. Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. New Engl J Med. 2017;376:451–60.

    PubMed  Google Scholar 

  30. Milano CA, Rogers JG, Tatooles AJ, et al. HVAD: The ENDURANCE Supplemental Trial. JACC Heart Fail. 2018;6:792–802.

    PubMed  Google Scholar 

  31. Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med. 2018;378:1386–95.

    PubMed  Google Scholar 

  32. Pagani FD, Aaronson KD, Kormos R, et al. The NHLBI REVIVE-IT study: Understanding its discontinuation in the context of current left ventricular assist device therapy. J Heart Lung Transplant. 2016;35:1277–83.

    PubMed  Google Scholar 

  33. Kormos RL, Cowger J, Pagani FD, et al. The Society of Thoracic Surgeons Intermacs Database Annual Report: Evolving indications, outcomes, and scientific partnerships. Ann Thorac Surg. 2019;107:341–53.

    PubMed  Google Scholar 

  34. Suarez J, Patel CB, Felker GM, Becker R, Hernandez AF, Rogers JG. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011;4:779–84.

  35. Uriel N, Pak SW, Jorde UP, et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long term support and at the time of transplantation. J Am Coll Cardiol. 2010;56:1207–13.

    PubMed  Google Scholar 

  36. Bouabdallaoui N, El-Hamamsy I, Pham M, et al. Aortic regurgitation in patients with a left ventricular assist device: A contemporary review. J Heart Lung Transplant. 2018;37:1289–97.

    PubMed  Google Scholar 

  37. Shah P, Richard HA, Singh R, et al. Multicenter experience with durable biventricular assist devices. J Heart Lung Transplant. 2018;37:1093–101.

    PubMed  Google Scholar 

  38. Bernhardt AM, De By TM, Reichenspurner H, Deuse T. Isolated permanent right ventricular assist device implantation with the HeartWare continuous-flow ventricular assist device: first results from the European Registry for Patients with Mechanical Circulatory Support. Eur J Cardiothorac Surg. 2015;48:158–62.

    PubMed  Google Scholar 

  39. Kormos RL, McCall M, Althouse A, et al. Left ventricular assist device malfunctions, it is more than just the pump. Circulation. 2017;136:1714–25.

    PubMed  Google Scholar 

  40. Shan Neo SH, Min Ku JS, Sim Wong GC, et al. Life beyond Heart Failure– what are the long-term challenges, supportive care needs and views towards supportive care, of multiethnic Asian patients with left ventricular assist device and their caregivers? J. Pain Symptom Manage. 2020. https://doi.org/10.1016/j.jpainsymman.2020.03.022.

  41. Luo N, Rogers JG, Dodson GC, et al. usefulness of Palliative care to complement the management of patients on left ventricular assist devices. Am J Cardiol. 2016;118:733–8.

    PubMed  PubMed Central  Google Scholar 

  42. Goldstein NE, May CW, Meier DE. Comprehensive care for mechanical circulatory support: a new frontier for synergy with palliative care. Circ Heart Fail. 2011;4:519–27.

    PubMed  PubMed Central  Google Scholar 

  43. Shugh SB, Riggs KW, Morales DLS. Mechanical circulatory support in children: past, present and future. Transl Pediatr. 2019;8:269–77.

    PubMed  PubMed Central  Google Scholar 

  44. Topkara VK, Kondareddy S, Malik F, et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg. 2010;90:1270–7.

  45. Slaughter MS, Myers TJ. Transcutaneous energy transmission for mechanical circulatory support systems: History, current status and future prospects. J Card Surg. 2010;25:484–9.

    PubMed  Google Scholar 

  46. Knecht OM Transcutaneous Energy and Information Transfer for Left Ventricular Assist Devices. https://www.pespublications.ee.ethz.ch/uploads/tx_ethpublications/Diss_Knecht_no_24719_pdf_links_270818.pdf Google search: Accessed 18 April 2020.

  47. Pya Y, Maly J, Bekbossynova M, et al. First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2019;38:339–43.

    PubMed  Google Scholar 

  48. Mehra MR, Uriel N, Naka Y, et al. A Fully Magnetically levitated left ventricular assist device — final report. N Engl J Med. 2019;380:1618–27.

    PubMed  Google Scholar 

  49. Netuka I, Ivák P, Tučanová Z. Evaluation of low-intensity anti-coagulation with a fully magnetically levitated centrifugal-flow circulatory pump—the MAGENTUM 1 study. J Heart Lung Transplant. 2018;37:579–86.

    PubMed  Google Scholar 

  50. Lim HS, Ranasinghe A, Mascaro J, Howell N. Discontinuation of aspirin in Heartmate 3 left ventricular assist device. ASAIO J. 2019;65:631–3.

    PubMed  Google Scholar 

  51. Jorde UP, Uriel N, Nahumi N, et al. Prevalence, significance and management of aortic insufficiency in continuous flow left ventricular assist device recipients. Circ Heart Fail. 2014;7:310–9.

    PubMed  Google Scholar 

  52. Yalcin YC, Muslem R, Veen KM, et al. Impact of continuous flow left ventricular assist device therapy on chronic kidney disease: A longitudinal multicenter study. J Card Fail. 2020;26:333–41.

    PubMed  Google Scholar 

  53. Ambardekar AV, Hunter KS, Babu AN, et al. Changes in Aortic Wall Structure, Composition, and StiffnessWith Continuous-Flow Left Ventricular Assist Devices, A Pilot Study. Circ Heart Fail. 2015;8:944–52.

    PubMed  Google Scholar 

  54. Yandrapalli S, Raza A, Tariq S, Aronow WS. Ambulatory pulmonary artery pressure monitoring in advanced heart failure patients. World J Cardiol. 2017;9:21–6.

    Google Scholar 

  55. Balakrishnan K, Bhat S, Mathew J, Krishnakumar R. Is the Diameter of the Outflow Graft the Crucial Difference in Stroke Rates Between Heartmate II and HVAD? A Computational Fluid Dynamics Study. J Heart Lung Transplant. 2016;35(4S):324. https://doi.org/10.1016/j.healun.2016.01.926 Google search accessed 6 May 2020.

    Article  Google Scholar 

  56. Letzen B, Park J, Tuzun Z, et al. Design and development of a miniaturized percutaneously deployable wireless left ventricular assist device: early prototypes and feasibility testing. ASAIO J. 2018;64:147–53.

    PubMed  PubMed Central  Google Scholar 

  57. Birks EJ, Tansley PD, Hardy J, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. New Engl J Med. 2006;355:1873–84.

    CAS  PubMed  Google Scholar 

  58. Ibrahim M, Rao C, Athanasiou T, Yacoub MH, Terracciano CM. Mechanical unloading and cell therapy have a synergistic role in the recovery and regeneration of the failing heart. Eur J Cardiothorac Surg. 2012;42:312–8.

    PubMed  Google Scholar 

  59. Shih T, Dimick JB. Reducing the cost of left ventricular assist devices: Why it matters and can it be done? J Thorac Cardiovasc Surg. 2018;155:2466–8.

    PubMed  Google Scholar 

  60. Shreibati JB, Goldhaber-Fiebert JD, Banerjee D, Owens DK, Hlatky MA. Cost-effectiveness of left ventricular assist devices in ambulatory patients with advanced heart failure. JACC Heart Fail. 2017;5:110–9.

    Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumaraswamy Sivathasan.

Ethics declarations

Ethics approval

Not required being a review article

Human and animal rights

Not required being a review article

Informed consent

Not required being a review article

Conflict of interest

Proctoring for Abbott, Asia Pacific.

Attended workshops and educational meetings organized by Abbotts and Medtronic Asia Pacific.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivathasan, C. Chugging to silent machines: development of mechanical cardiac support. Indian J Thorac Cardiovasc Surg 36 (Suppl 2), 234–246 (2020). https://doi.org/10.1007/s12055-020-01010-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12055-020-01010-2

Keywords

Navigation