Skip to main content

Advertisement

Log in

Integrating cost information in energy efficiency measurement: An empirical study on thermal power companies

  • Original Paper
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Energy saving and emission reduction sometimes mean high cost, so companies do not have enough motivation to always support the related policy. By neglecting the economic cost and the imperfect substitution among input factors, widely used energy efficiency indicators such as “energy intensity” will sometimes lead to uneconomic results. Based on the theory of economic efficiency, “energy economic efficiency” is proposed as a new energy efficiency measurement to integrate cost information. In this paper, we further discuss energy economic efficiency, propose supplementary properties, and measure the efficiency of twelve public thermal power companies during the period of China’s 12th five-year plan. Our results show that (2) the economic efficiency of the twelve public companies decreased slowly. The average economic efficiency was 0.82, and there was approximately 40 billion RMB in potential cost savings in 2015, accounting for 18% of the total cost. (2) The energy economic efficiency of these twelve companies increased by approximately 10% during 2011–2015. (3) The primary mission of most thermal power company is to improve the coal combustion technology. (Christensen 4) When expanding production, the input factors will sometimes be uncoordinated, which will lead to increased costs and decreased energy economic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajayi, V., Weyman-Jones, T., & Glass, A. (2017). Cost efficiency and electricity market structure: a case study of OECD countries. Energy Economics, 65, 283–291.

    Article  Google Scholar 

  • Balku, Ş. (2017). Analysis of combined cycle efficiency by simulation and optimization. Energy Conversion and Management, 148, 174–183.

    Article  Google Scholar 

  • Bi, G. B., Song, W., Zhou, P., & Liang, L. (2014). Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model. Energy Policy, 66, 537–546.

    Article  Google Scholar 

  • Christensen, L. (1976). Economies of scale in us electric power generation. Journal of Political Economy, 84(4), 655–676.

    Article  Google Scholar 

  • Dorfman, R., Samuelson, P. A., & Solow, R. M. (1958). Linear programming and economic analysis. Santa Monica: RAND Corporation.

  • Du, L., Hanley, A., & Zhang, N. (2016). Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: a parametric meta-frontier analysis. Resource and Energy Economics, 43, 14–32.

    Article  Google Scholar 

  • Färe, R., Grosskopf, S., & Lovell, C. K. (1985). The measurement of efficiency of production. Springer Science & Business Media, 6.

  • Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. American Economic Review, 84(1), 66–83.

    Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General), 120(3), 253–290.

    Article  Google Scholar 

  • Jorgenson, D., Gollop, F. M., & Fraumeni, B. (2016). Productivity and US economic growth. Elsevier, 169.

  • Li, M. J., Song, C. X., & Tao, W. Q. (2016a). A hybrid model for explaining the short-term dynamics of energy efficiency of China’s thermal power plants. Applied Energy, 169, 738–747.

    Article  Google Scholar 

  • Li, H. Z., Kopsakangas-Savolainen, M., Xiao, X. Z., Tian, Z. Z., Yang, X. Y., & Wang, J. L. (2016b). Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS. Energy Economics, 55, 272–283.

    Article  Google Scholar 

  • Liao, H., Du, Y. F., Huang, Z., & Wei, Y. M. (2016). Measuring energy economic efficiency: a mathematical programming approach. Applied Energy, 179, 479–487.

    Article  Google Scholar 

  • Maloney, M. T. (2001). Economies and diseconomies: estimating electricity cost functions. Review of Industrial Organization, 19(2), 165–180.

    Article  Google Scholar 

  • NBS (National Bureau of Statistics of China) (2010). Handbook of energy statistics. Beijing: China Statistical Press.

  • NBS (National Bureau of Statistics of China) 2017. China statistical yearbook 2017. Beijing: China Statistical Press.

  • NDRC (National Development and Reform Commission) (2017). The 13th five-year plan for electricity of the People's Republic of China. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201706/t20170605_1196777.html. Accessed 20 Dec 2017.

  • Tao, Y., & Zhang, S. (2013). Environmental efficiency of electric power industry in the Yangtze River Delta. Mathematical and Computer Modelling, 58(5), 927–935.

    Article  Google Scholar 

  • Wang, Y. S., Xie, B. C., Shang, L. F., & Li, W. H. (2013). Measures to improve the performance of China’s thermal power industry in view of cost efficiency. Applied Energy, 112, 1078–1086.

    Article  Google Scholar 

  • Wang, K., Lee, C. Y., Zhang, J., & Wei, Y. M. (2016a). Operational performance management of the power industry: a distinguishing analysis between effectiveness and efficiency. Annals of Operations Research, 1–25.

  • Wang, K., Xian, Y., Zhang, J., Li, Y., & Che, L. (2016b). Potential carbon emission abatement cost recovery from carbon emission trading in China: an estimation of industry sector. Journal of Modelling in Management, 11(3), 842–854.

    Article  Google Scholar 

  • Wang, H., Ang, B. W., Wang, Q. W., & Zhou, P. (2017). Measuring energy performance with sectoral heterogeneity: a non-parametric frontier approach. Energy Economics, 62, 70–78.

    Article  Google Scholar 

  • Wei, Y. M., & Liao, H. (2010). China energy report (2010): Energy efficiency research. Beijing: Science Press.

    Google Scholar 

  • Xie, B. C., Shang, L. F., Yang, S. B., & Yi, B. W. (2014). Dynamic environmental efficiency evaluation of electric power industries: evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countries. Energy, 74, 147–157.

    Article  Google Scholar 

  • Xu, C., Xu, G., Zhao, S., Dong, W., Zhou, L., & Yang, Y. (2016). A theoretical investigation of energy efficiency improvement by coal pre-drying in coal fired power plants. Energy Conversion and Management, 122, 580–588.

    Article  Google Scholar 

  • Zhang, N., Kong, F., Choi, Y., & Zhou, P. (2014). The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. Energy Policy, 70, 193–200.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the constructive comments from Prof. Paolo Bertoldi and the anonymous reviewers.

Funding

This work is supported by funding from the National Natural Science Foundation of China (Nos. 71521002, 71673026, 71925008, 71950007), Joint Development Program of Beijing Municipal Commission of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Liao or Yi-Ming Wei.

Ethics declarations

Disclaimer

The views expressed in this paper are solely the authors’ own and do not necessarily reflect the views of the supporting agencies and authors’ affiliations. The authors alone are responsible for any remaining deficiencies.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix

4 The code and data (RAR 14 kb)

Appendices

Appendix 1. The proof

Assuming that:

Ee:

is economic efficiency;

ke:

is capital economic efficiency;

le:

is labor economic efficiency;

ee:

is energy economic efficiency.

ck:

is the capital cost under real situation,

ck:

is the capital cost under optimal situation;

cl:

is the labor cost under real situation,

cl:

is the labor cost under optimal situation;

ce:

is the energy cost under real situation,

ce:

is the energy cost under optimal situation.

According to the definitions, we have:

$$ {k}_e=\frac{c{k}^{\ast }}{ck} $$
(9)
$$ {l}_e=\frac{c{l}^{\ast }}{cl} $$
(10)
$$ {e}_e=\frac{c{e}^{\ast }}{ck} $$
(11)
$$ {E}_e=\frac{c{k}^{\ast }+c{l}^{\ast }+c{e}^{\ast }}{ck+ cl+ ce} $$
(12)

So,

$$ {E}_e=\frac{c{k}^{\ast }+c{l}^{\ast }+c{e}^{\ast }}{ck+ cl+ ce}=\frac{k_e\times ck+{l}_e\times cl+{e}_e\times ce}{ck+ cl+ ce}=\frac{k_e\times ck}{ck+ cl+ ce}+\frac{l_e\times cl}{ck+ cl+ ce}+\frac{e_e\times ce}{ck+ cl+ ce}=\frac{ck}{ck+ cl+ ce}\times {k}_e+\frac{cl}{ck+ cl+ ce}\times c{l}_e+\frac{ce}{ck+ cl+ ce}\times {e}_e $$
(13)

Let,

$$ {\displaystyle \begin{array}{c}\alpha =\frac{ck}{ck+ cl+ ce}\\ {}\beta =\frac{cl}{ck+ cl+ ce}\\ {}\gamma =\frac{ce}{ck+ cl+ ce}\end{array}} $$
(14)

We have,

$$ \alpha +\beta +\gamma =\frac{ck}{ck+ cl+ ce}+\frac{cl}{ck+ cl+ ce}+\frac{ce}{ck+ cl+ ce}=1 $$
(15)

That is,

$$ {\displaystyle \begin{array}{c}{E}_e=\alpha {k}_e+\beta {l}_e+\gamma {e}_e\\ {}\ \alpha +\beta +\gamma =1\end{array}} $$
(16)

Appendix 2. The full names, abbreviations, and stock codes of the 12 companies

No.

Company name

Company code

Assets (billion RMB)

Location

1

Huadian Energy Company

HDNY

23.4

Harbin

2

Huadian Power International

HDGJ

176.1

Jinan

3

Jilin Electric Power

JDGF

18.9

Changchun

4

Guodian Changyuan Electric Power

CYDL

11.6

Wuhan

5

Zhejiang Zheneng Electric Power

ZNDL

100

Hangzhou

6

Gd Power Development

GDDL

225.4

Beijing

7

Inner Mongolia Mengdian Huaneng

NMHD

36.9

Huhhot

8

Datang International Power Generation

DTFD

282.9

Beijing

9

Hebei Jiantou Energy Investment

JTNY

20.3

Shijiazhuang

10

Henan Yuneng Holdings

YNKG

8.8

Zhengzhou

11

Huaneng Power International

HNGJ

268.7

Beijing

12

Datang Huayin Electric Power

HYDL

16.6

Changsha

Appendix 3. The results

Company code

Year

Economic efficiency

Capital economic efficiency

Labor economic efficiency

Energy economic efficiency

Energy utilize efficiency

HDNY

2011

0.75

1.57

0.38

0.68

0.88

HDNY

2012

0.75

1.53

0.34

0.68

0.88

HDNY

2013

0.72

1.13

0.31

0.72

0.83

HDNY

2014

0.73

1.06

0.35

0.74

0.82

HDNY

2015

0.73

1.01

0.32

0.75

0.81

HDGJ

2011

0.81

1.55

0.99

0.70

0.90

HDGJ

2012

0.81

1.38

0.99

0.71

0.87

HDGJ

2013

0.84

1.16

1.04

0.76

0.88

HDGJ

2014

0.85

1.09

1.06

0.77

0.88

HDGJ

2015

0.83

0.92

0.97

0.78

0.84

JDGF

2011

0.76

1.29

0.75

0.68

0.81

JDGF

2012

0.76

0.86

0.75

0.74

0.77

JDGF

2013

0.77

0.80

0.75

0.76

0.77

JDGF

2014

0.74

0.66

0.66

0.78

0.75

JDGF

2015

0.70

0.54

0.58

0.84

0.76

CYDL

2011

0.75

1.49

0.63

0.69

0.87

CYDL

2012

0.75

1.31

0.55

0.70

0.83

CYDL

2013

0.78

1.46

0.68

0.70

0.87

CYDL

2014

0.80

1.31

0.55

0.75

0.86

CYDL

2015

0.79

1.00

0.55

0.80

0.83

ZNDL

2013

0.92

1.56

1.79

0.77

1.00

ZNDL

2014

0.88

1.17

1.38

0.78

0.94

ZNDL

2015

0.84

0.91

1.14

0.79

0.89

GDDL

2011

0.99

1.21

0.84

0.96

1.00

GDDL

2012

0.99

1.14

0.81

0.97

1.00

GDDL

2013

0.99

1.13

0.95

0.96

1.00

GDDL

2014

1.00

1.00

1.00

1.00

1.00

GDDL

2015

0.98

0.84

0.95

1.06

1.00

NMHD

2011

0.92

1.21

1.15

0.80

0.96

NMHD

2012

0.88

1.03

1.12

0.79

0.90

NMHD

2013

0.89

0.87

0.59

0.96

0.92

NMHD

2014

0.87

0.77

0.50

0.98

0.88

NMHD

2015

0.78

0.61

0.43

0.98

0.80

DTFD

2011

0.88

1.43

1.79

0.74

0.98

DTFD

2012

0.85

1.14

1.40

0.74

0.91

DTFD

2013

0.86

1.04

1.35

0.75

0.91

DTFD

2014

0.82

0.85

1.13

0.76

0.87

DTFD

2015

0.77

0.68

1.01

0.77

0.84

JTNY

2011

0.79

1.64

0.62

0.70

0.91

JTNY

2012

0.77

1.58

0.55

0.71

0.90

JTNY

2013

0.83

1.37

0.80

0.75

0.92

JTNY

2014

0.84

1.19

0.87

0.76

0.88

JTNY

2015

0.82

0.95

0.83

0.77

0.83

YNKG

2012

0.73

1.40

2.27

0.60

1.00

YNKG

2013

0.85

1.15

1.87

0.74

1.00

YNKG

2014

0.83

1.08

1.00

0.76

0.86

YNKG

2015

0.96

0.82

0.86

1.03

0.97

HNGJ

2011

0.83

1.55

1.29

0.71

0.92

HNGJ

2012

0.80

1.27

1.17

0.72

0.87

HNGJ

2013

0.85

1.27

1.17

0.76

0.91

HNGJ

2014

0.83

1.11

1.08

0.76

0.88

HNGJ

2015

0.84

1.03

1.06

0.76

0.87

HYDL

2011

0.82

1.85

0.63

0.73

1.00

HYDL

2012

0.83

1.73

0.60

0.73

0.98

HYDL

2013

0.81

1.40

0.54

0.74

0.92

HYDL

2014

0.77

0.91

0.54

0.78

0.84

HYDL

2015

0.65

0.57

0.40

0.77

0.72

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YF., Liao, H. & Wei, YM. Integrating cost information in energy efficiency measurement: An empirical study on thermal power companies. Energy Efficiency 13, 697–709 (2020). https://doi.org/10.1007/s12053-020-09849-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-020-09849-5

Keywords

Navigation