Skip to main content
Log in

Numerical and experimental studies on feasibility of a cryogenic turboexpander rotor supported on gas foil bearings

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Gas foil bearings are gaining popularity for their compliance properties in various high-speed turbomachinery applications such as air cycle machine, turbocompressor, turbocharger, turboexpander etc. A modest attempt is made in the current research to study the feasibility of gas foil bearing for a turboexpander rotating at 1,75,000 rpm. The turboexpander rotor with 16 mm diameter and 91 mm length used for experimentation is supported by a pair of gas foil journal bearings and mounted with turbine and compressor wheels at both ends of the rotor. The feasibility study was performed based on comparison of rotodynamic analysis and experimental data for the critical speed of the rotor and unbalance response at bearing locations. The critical speeds and the unbalance response are predicted using the finite element analysis, which takes into account the gyroscopic effect, shear deformation, internal damping, inertia of the rotor and the dynamic coefficients of the gas foil bearing. The predicted and experimental variation of critical speed is found to be within a relative error of 3–6%; similarly, the variation of unbalance response was found with a relative error of 2–9%. The low relative errors suggest that the experiment and prediction methodology are credible. The author believes that the rotodynamic analysis methodology will be quite valuable for researchers working in the area of high-speed rotors supported with gas foil bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

Abbreviations

\([M_{e}^{T} ]_{S}\) :

Translatory mass matrix of the shaft

\([M_{e}^{R} ]_{S}\) :

Rotary mass matrix of the shaft

\({[}G_{e} {]}_{S}\) :

Gyroscopic matrix of the shaft

\([K_{e} ]_{S}\) :

Stiffness matrix of the shaft

\(\{ F_{e} \}_{S}\) :

Generalized force vector of the shaft element

\([M_{e} ]_{D}\) :

Mass matrix of the disc

\({[}G_{e} {]}_{D}\) :

Gyroscopic matrix of the disc

\(\{ F_{e} \}_{D}\) :

Generalized force vector of the disk element

\(q\) :

Displacement vector

\(u\) :

Displacement of node in X direction

\(v\) :

Displacement of node in X direction

\({[}C{]}_{B}\) :

Damping matrix of the bearing

\([K]_{B}\) :

Stiffness matrix of the bearing

\(\{ F_{e} \}_{B}\) :

Generalized force vector of the bearing

\(\left[ M \right]\) :

Global mass matrix

\(\left[ C \right]\) :

Global damping matrix

\(\left[ K \right]\) :

Global stiffness matrix

\(\{ F\}\) :

Global force vector

\(\omega\) :

Angular velocity

\(\xi\) :

Rotational displacement of node about X direction

\(\psi\) :

Rotational displacement of node about Y direction

References

  1. DellaCorte C, Zaldana A R and Radil K C 2004 A systems approach to the solid lubrication of foil air bearings for oil-free turbomachinery. J. Trib. 126: 200–207

    Article  Google Scholar 

  2. Waumans T, Peirs J, Al-Bender F and Reynaerts D 2011 Aerodynamic journal bearing with a flexible, damped support operating at 7.2 million DN. J. Micromech. Microeng. 21: 104014

    Article  Google Scholar 

  3. Pattnayak M R, Dutt J K and Pandey R K 2022 Rotordynamics of an accelerating rotor supported on aerodynamic journal bearings. Tribol. Int. 176: 107883

    Article  Google Scholar 

  4. Li L, Zhang D and Xie Y 2019 Effect of misalignment on the dynamic characteristic of MEMS gas bearing considering rarefaction effect. Tribol. Int. 139: 22–35

    Article  Google Scholar 

  5. Yang Q, Liu Y and Zhang H 2016 Unbalance response of micro gas bearing-rotor system considering rarefaction effect. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 230: 281–288

    Article  Google Scholar 

  6. Zhang W M, Meng G and Wei K X 2012 Numerical prediction of surface roughness effect on slip flow in gas-lubricated journal microbearings. Tribol. Trans. 55: 71–76

    Article  Google Scholar 

  7. Pattnayak M R, Pandey R K and Dutt J K 2020 Performance behaviours of a self-acting gas journal bearing with a new bore design. Tribol. Int. 151: 106418

    Article  Google Scholar 

  8. Pattnayak M R, Pandey R K and Dutt J K 2021 Effects of new micro-pocketed bore surface topographies on the performance behaviours of aerodynamic journal bearing. Surf. Topogr. Metrol. Prop. 9: 025001

    Article  Google Scholar 

  9. Liu W, Bättig P, Wagner P H and Schiffmann J 2021 Nonlinear study on a rigid rotor supported by herringbone grooved gas bearings: Theory and validation. Mech. Syst. Signal Process. 146: 106983

    Article  Google Scholar 

  10. Miyanaga N and Tomioka J 2015 Stability analysis of Herringbone-grooved aerodynamic journal bearings for ultra high-speed rotations. Int. J. Mater. Mech. Manuf. 4: 156–161

    Google Scholar 

  11. Schiffmann J 2013 Enhanced groove geometry for herringbone grooved journal bearings. J. Eng. Gas Turbines Power. 135: 102501

    Article  Google Scholar 

  12. Schiffmann J and Favrat D 2010 Integrated design and optimization of gas bearing supported rotors. J. Mech. Des. 132: 051007

    Article  Google Scholar 

  13. Pattnayak M R, Ganai P, Pandey R K, Dutt J K and Fillon M 2022 An overview and assessment on aerodynamic journal bearings with important findings and scope for explorations. Tribol. Int. 174: 107778

    Article  Google Scholar 

  14. Hayashi K and Hirasata K 1995 Developments of aerodynamic foil bearings for small high-speed rotor. Tribol. Ser. 30: 291–299

    Article  Google Scholar 

  15. Walton J F and Heshmat H 1994 Compliant foil bearings for use in cryogenic turbopumps. NASA CP 3282(1): 372–381

    Google Scholar 

  16. Xiong L Y, Wu G, Hou Y, Liu L Q, Ling M F and Chen C Z 1997 Development of aerodynamic foil journal bearings for a high speed cryogenic turboexpander. Cryogenics. 37: 221–230

    Article  Google Scholar 

  17. Hou Y, Xiong L Y, Wang J, Lin M F and Chen C Z 2000 The experimental study of aerodynamic plate-foil journal bearings for High Speed Cryogenic Turboexpander. Tribol. Trans. 43: 681–684

    Article  Google Scholar 

  18. Walton J F and Hesmat H 2002 Application of foil bearings to turbomachinery including vertical operation. J. Eng. Gas Turbines Power. 124: 1032–1041

    Article  Google Scholar 

  19. Hou Y, Zhu Z H and Chen C Z 2004 Comparative test on two kinds of new compliant foil bearing for small cryogenic turbo-expander. Cryogenics. 44: 69–72

    Article  Google Scholar 

  20. Lai T, Chen S, Ma B, Zheng Y and Hou Y 2014 Effects of bearing clearance and supporting stiffness on performances of rotor-bearing system with multi-decked protuberant gas foil journal bearing. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 228: 780–788

    Article  Google Scholar 

  21. Lai T, Guo Y, Zhao Q, Wang Y, Zhang X and Hou Y 2018 Numerical and experimental studies on stability of cryogenic turbo-expander with protuberant foil gas bearings. Cryogenics. 96: 62–74

    Article  Google Scholar 

  22. Özşahin O, Özgüven H N and Budak E 2014 Analytical modeling of asymmetric multi-segment rotor-bearing systems with Timoshenko beam model including gyroscopic moments. Comput. Struct. 144: 119–126

    Article  Google Scholar 

  23. Nikolajsen J L 2001 Finite element and transfer matrix methods for rotordynamics: A comparison. In: ASME Turbo Expo: Power for Land, Sea, and Air, pp. V004T03A002

  24. Jalali M H, Ghayour M, Ziaei-Rad S and Shahriari B 2014 Dynamic analysis of a high speed rotor-bearing system. Measurement. 53: 1–9

    Article  Google Scholar 

  25. Han D, Bi C and Yang J 2019 Nonlinear dynamic behavior research on high-speed turbo-expander refrigerator rotor. Eng. Fail. Anal. 96: 484–495

    Article  Google Scholar 

  26. Friswell M I 2010 Dynamics of Rotating Machines. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  27. Khamari D S, Kumar J and Behera S K 2021 Numerical investigation of influence sensitivity of a gas foil bearing parameters on the dynamic coefficients. J. Braz. Soc. Mech. Sci. Eng. 43: 1–19

    Article  Google Scholar 

  28. Das A S and Dutt J K 2008 Reduced model of a rotor-shaft system using modified SEREP. Mech. Res. Commun. 35: 398–407

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanshu S Khamari.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest to any person or organization.

Appendix

Appendix

1.1 A.1. Shaft element matrices

$$ [M_{e}^{T} ]_{s} = \frac{{\uprho AL_{e} }}{{840(1 +\Phi )^{2} }}\left[ {\begin{array}{*{20}c} {m_{1} } & 0 & 0 & {m_{2} } & {m_{3} } & 0 & 0 & {m_{4} } \\ 0 & {m_{1} } & { - m_{2} } & 0 & 0 & {m_{3} } & { - m_{4} } & 0 \\ 0 & { - m_{2} } & {m_{5} } & 0 & 0 & {m_{4} } & {m_{6} } & 0 \\ {m_{2} } & 0 & 0 & {m_{5} } & { - m_{4} } & 0 & 0 & {m_{6} } \\ {m_{3} } & 0 & 0 & { - m_{4} } & {m_{1} } & 0 & 0 & { - m_{2} } \\ 0 & {m_{3} } & {m_{4} } & 0 & 0 & {m_{1} } & {m_{2} } & 0 \\ 0 & { - m_{4} } & {m_{6} } & 0 & 0 & {m_{2} } & {m_{5} } & 0 \\ {m_{4} } & 0 & 0 & {m_{6} } & { - m_{2} } & 0 & 0 & {m_{5} } \\ \end{array} } \right] $$
(A.1)
$$ [M_{e}^{R} ]_{s} = \frac{{{\uprho {\rm I}}}}{{30L_{e} (1 +\Phi )^{2} }}\left[ {\begin{array}{*{20}c} {m_{7} } & 0 & 0 & {m_{8} } & { - m_{7} } & 0 & 0 & {m_{8} } \\ 0 & {m_{7} } & { - m_{8} } & 0 & 0 & {m_{7} } & { - m_{8} } & 0 \\ 0 & { - m_{8} } & {m_{9} } & 0 & 0 & {m_{8} } & {m_{10} } & 0 \\ {m_{8} } & 0 & 0 & {m_{9} } & { - m_{8} } & 0 & 0 & {m_{10} } \\ { - m_{7} } & 0 & 0 & { - m_{8} } & {m_{7} } & 0 & 0 & { - m_{8} } \\ 0 & { - m_{7} } & {m_{8} } & 0 & 0 & {m_{7} } & {m_{8} } & 0 \\ 0 & { - m_{8} } & {m_{10} } & 0 & 0 & {m_{8} } & {m_{9} } & 0 \\ {m_{8} } & 0 & 0 & {m_{10} } & { - m_{8} } & 0 & 0 & {m_{9} } \\ \end{array} } \right] $$
(A.2)
$$ {[}G_{e} {]}_{s} = \frac{{{\uprho {\rm I}}}}{{15L_{e} (1 +\Phi )^{2} }}\left[ {\begin{array}{*{20}c} 0 & { - g_{1} } & {g_{2} } & 0 & 0 & {g_{1} } & {g_{2} } & 0 \\ {g_{1} } & 0 & 0 & {g_{2} } & { - g_{1} } & 0 & 0 & {g_{2} } \\ { - g_{2} } & 0 & 0 & { - g_{3} } & {g_{2} } & 0 & 0 & { - g_{4} } \\ 0 & { - g_{2} } & {g_{3} } & 0 & 0 & {g_{2} } & {g_{4} } & 0 \\ 0 & {g1} & { - g_{2} } & 0 & 0 & { - g_{1} } & { - g_{2} } & 0 \\ { - g_{1} } & 0 & 0 & { - g_{2} } & {g_{1} } & 0 & 0 & { - g_{2} } \\ { - g_{2} } & 0 & 0 & { - g_{4} } & {g_{2} } & 0 & 0 & { - g_{3} } \\ 0 & { - g_{2} } & {g_{4} } & 0 & 0 & {g_{2} } & {g_{3} } & 0 \\ \end{array} } \right] $$
(A.3)
$$ [K_{e} ]_{s} = \frac{{{{\rm E}{\rm I}}}}{{L_{e}^{3} (1 +\Phi )}}\left[ {\begin{array}{*{20}c} {12} & 0 & 0 & {6L_{e} } & { - 12} & 0 & 0 & {6L_{e} } \\ 0 & {12} & { - 6L_{e} } & 0 & 0 & { - 12} & { - 6L_{e} } & 0 \\ 0 & { - 6L_{e} } & {(4 +\Phi )L_{e}^{2} } & 0 & 0 & {6L_{e} } & {(2 -\Phi )L_{e}^{2} } & 0 \\ {6L_{e} } & 0 & 0 & {(4 +\Phi )L_{e}^{2} } & { - 6L_{e} } & 0 & 0 & {(2 -\Phi )L_{e}^{2} } \\ { - 12} & 0 & 0 & { - 6L_{e} } & {12} & 0 & 0 & { - 6L_{e} } \\ 0 & { - 12} & {6L_{e} } & 0 & 0 & {12} & {6L_{e} } & 0 \\ 0 & { - 6L_{e} } & {(2 -\Phi )L_{e}^{2} } & 0 & 0 & {6L_{e} } & {(4 +\Phi )L_{e}^{2} } & 0 \\ {6L_{e} } & 0 & 0 & {(2 -\Phi )L_{e}^{2} } & { - 6L_{e} } & 0 & 0 & {(4 +\Phi )L_{e}^{2} } \\ \end{array} } \right] $$
(A.4)

Where,

$$\begin{aligned} m_{1} & = 312 + 588\Phi + 280\Phi ^{2} , \\ m_{2} & = (44 + 77\Phi + 35\Phi ^{2} )L_{e} , \\ m_{3} & = 108 + 252\Phi + 140\Phi ^{2} , \\ m_{4} & = - (26 + 63\Phi + 35\Phi ^{2} )L_{e} , \\ m_{5} & = (8 + 14\Phi + 7\Phi ^{2} )L_{e}^{2} , \\ m_{6} & = - (6 + 14\Phi + 7\Phi ^{2} )L_{e}^{2} , \\ m_{7} & = 36, \\ m_{8} & = (3 - 15\Phi )L_{e} , \\ m_{9} & = (4 + 5\Phi + 10\Phi ^{2} )L_{e}^{2} , \\ m_{{10}} & = ( - 1 - 5\Phi + 5\Phi ^{2} )L_{e}^{2} , \\ g_{1} & = 36, \\ g_{2} & = (3 - 15\Phi )L_{e} , \\ g_{3} & = (4 + 5\Phi + 10\Phi ^{2} )L_{e}^{2} , \\ g_{4} & = ( - 1 - 5\Phi + 5\Phi ^{2} )L_{e}^{2} . \\ \end{aligned}$$

1.2 A.2. Bearing matrices

$$ [C]_{B} = \left[ {\begin{array}{*{20}c} {C_{xx} } & {C_{xy} } \\ {C_{yx} } & {C_{YY} } \\ \end{array} } \right]\;\;\;\;[K]_{B} = \left[ {\begin{array}{*{20}c} {K_{xx} } & {K_{xy} } \\ {K_{yx} } & {K_{YY} } \\ \end{array} } \right] $$
(A.5-6)

1.3 A.3. Disc matrices

$$ [M_{e} ]_{D} = \left[ {\begin{array}{*{20}c} {m_{d} } & 0 & 0 & 0 \\ 0 & {m_{d} } & 0 & 0 \\ 0 & 0 & {I_{d} } & 0 \\ 0 & 0 & 0 & {I_{d} } \\ \end{array} } \right]\;\;\;\;[G_{e} ]_{D} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & { - I_{p} } \\ 0 & 0 & {I_{p} } & 0 \\ \end{array} } \right] $$
(A.7-8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamari, D.S., Behera, S.K. Numerical and experimental studies on feasibility of a cryogenic turboexpander rotor supported on gas foil bearings. Sādhanā 48, 224 (2023). https://doi.org/10.1007/s12046-023-02298-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-023-02298-7

Keywords

Navigation