Skip to main content
Log in

Stability analysis of homogeneous unsaturated soil slopes by using the variational method

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The present study aims at addressing the stability of homogenous soil slopes by duly considering the unsaturated properties of the soil above the water table. The variational technique which is developed on the framework of the limit equilibrium method is employed to determine the critical factor of safety and the corresponding critical slip surfaces. The unsaturated soil above the water table is modelled by incorporating the suitable soil water characteristics curve and hydraulic conductivity function and on the basis of the suction-stress-based effective stress approach. An extensive parametric study is carried out to understand the combined effect of slope geometry, strength properties, hydromechanical parameters, location of the water table, and the impact of climatic conditions. The flows within the soil are considered unidirectional and are of three types, namely, evaporation (positive), precipitation (negative), and no-flow type (zero flow). Stability charts and slip surfaces are produced to show the effect of fluctuations in the water table and climatic conditions. The computed solutions match quite well with the existing solutions available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Fellenius W 1936 Calculation of stability of earth dam. In: Transactions of 2nd Congress Large Dams, Washington, DC, 4, pp. 445–462

  2. Taylor D W 1937 Stability of earth slopes. J. Boston Soc. Civ. Eng. 24(3): 197–247

    Google Scholar 

  3. Janbu N 1954 Application of composite slip surface for stability analysis. In: Proceedings of European Conference on Stability of Earth Slopes, Sweden, 3, pp. 43–49

  4. Bishop A W 1955 The use of the slip circle in the stability analysis of slopes. Geotechnique 5(1): 7–17

    Article  Google Scholar 

  5. Morgenstern N U and Price V E 1965 The analysis of the stability of general slip surfaces. Geotechnique 15(1): 79–93

    Article  Google Scholar 

  6. Spencer E 1967 A method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique 17(1): 11–26

    Article  Google Scholar 

  7. Sarma S K 1973 Stability analysis of embankments and slopes. Geotechnique 23(3): 423–433

    Article  Google Scholar 

  8. Chen Z Y and Morgenstern N R 1983 Extensions to the generalized method of slices for stability analysis. Can. Geotech. J. 20(1): 104–119

    Article  Google Scholar 

  9. Fredlund D G and Morgenstern N R 1977 Stress state variables for unsaturated soils. J. Geotech. Eng. Div. 103(5): 447–466

    Article  Google Scholar 

  10. Fredlund D G and Rahardjo H 1993 Soil mechanics for unsaturated soils. Wiley, New York

    Book  Google Scholar 

  11. Lu N and Godt J 2008 Infinite slope stability under steady unsaturated seepage conditions. Water Resour. Res. 44(11): W11404

    Article  Google Scholar 

  12. Travis Q B, Houston S L, Marinho F A and Schmeeckle M 2010 Unsaturated infinite slope stability considering surface flux conditions. J. Geotech. Geoenviron. Eng., ASCE 136(7): 963–974

    Article  Google Scholar 

  13. Gavin K and Xue J 2010 Design charts for the stability analysis of unsaturated soil slopes. Geotech. Geol. Eng. 28(1): 79–90

    Article  Google Scholar 

  14. Vahedifard F, Leshchinsky D, Mortezaei K and Lu N 2016 Effective stress-based limit-equilibrium analysis for homogeneous unsaturated slopes. Int. J. Geomech., ASCE 16(6): D4016003

    Article  Google Scholar 

  15. Cho S E and Lee S R 2001 Instability of unsaturated slopes due to infiltration. Comput. Geotech. 28(3): 185–208

    Article  Google Scholar 

  16. Cho S E and Lee S R 2002 Evaluation of surficial stability for homogeneous slopes considering rainfall characteristics. J. Geotech. Geoenviron. Eng., ASCE 128(9): 756–763

    Article  Google Scholar 

  17. Cai F and Ugai K 2004 Numerical analysis of rainfall effects on slope stability. Int. J. Geomech., ASCE 4(2): 69–78

    Article  Google Scholar 

  18. Griffiths D V and Lu N 2005 Unsaturated slope stability analysis with steady infiltration or evaporation using elasto-plastic finite elements. Int. J. Numer. Anal. Meth. Geomech. 29(3): 249–267

    Article  Google Scholar 

  19. Hamdhan I N and Schweiger H F 2013 Finite element method–based analysis of an unsaturated soil slope subjected to rainfall infiltration. Int. J. Geomech., ASCE 13(5): 653–658

    Article  Google Scholar 

  20. Sun D A, Wang L and Li L 2019 Stability of unsaturated soil slopes with cracks under steady-infiltration conditions. Int. J. Geomech., ASCE 19(6): 04019044

    Article  Google Scholar 

  21. Sun D M, Li X M, Feng P and Zang Y G 2016 Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model. Water Sci. Eng. 9(3): 183–194

    Article  Google Scholar 

  22. Kang S, Lee S R and Cho S E 2020 Slope stability analysis of unsaturated soil slopes based on the site-specific characteristics: a case study of hwangryeong mountain, Busan, Korea. Sustainability 12(7): 2839

    Article  Google Scholar 

  23. Kopacsy, J. (1961). Distribution des contraintes a la rupture forme de la surface de glissement et hauteur theorique des talus. In: Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, France, pp. 641–650

  24. Kogan B I and Lupashko A A 1970 Stability analysis of slopes. J. Soil. Mech. and Found. Eng. 3: 153–157

    Article  Google Scholar 

  25. Narayan C G P 1975 Variational Methods in Stability Analysis of Slopes. Ph.D. dissertation submitted to Indian Institute of Technology, Delhi, India

  26. Revilla J and Castillo E 1977 The calculus of variations applied to stability of slopes. Geotechnique 27(1): 1–11

    Article  Google Scholar 

  27. Baker R and Garber M 1978 Theoretical analysis of the stability of slopes. Geotechnique 28(4): 395–411

    Article  Google Scholar 

  28. Baker R 2003 Sufficient conditions for existence of physically significant solutions in limiting equilibrium slope stability analysis. Int. J. Solids Struct. 40: 3717–3735

    Article  Google Scholar 

  29. Baker R, Shukha R, Operstein V and Frydman S 2006 Stability charts for pseudo-static slope stability analysis. Soil Dyn. Earthq. Eng. 26(9): 813–823

    Article  Google Scholar 

  30. Castillo E and Luceno A 1982 A critical analysis of some variational methods in slope stability analysis. Int. J. Numer. Anal. Methods Geomech 6: 195–209

    Article  MathSciNet  Google Scholar 

  31. Leshchinsky D and Huang C C 1992 Generalized slope stability analysis: Interpretation, modification, and comparison. J. Geotech. Eng. 118(10): 1559–1576

    Article  Google Scholar 

  32. Leshchinsky D and San K C 1994 Pseudostatic seismic stability of slopes: design charts. J. Geotech. Eng. ASCE. 120: 1514–1532

    Article  Google Scholar 

  33. Ling H I, Leshchinsky D and Mohri Y 1997 Soil slopes under combined horizontal and vertical seismic accelerations. Earthq. Eng. Struct. Dyn. 26(12): 1231–1241

    Article  Google Scholar 

  34. Chen J, Yang Z, Hu R and Zhang H 2016 Study on the seismic active earth pressure by variational limit equilibrium method. Shock Vib. 1–11. https://doi.org/10.1155/2016/4158785

  35. Sarkar S and Chakraborty M 2019 Pseudostatic Slope stability analysis for cohesive-frictional soil by using variational method. Adv. Comput. Methods Geomech. 55: 159–171

  36. Sarkar S and Chakraborty M 2019 Pseudostatic Slope stability analysis in two-layered soil by using variational method. In: Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering Roma, Italy, Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, pp. 4857–4864

  37. Sarkar S and Chakraborty M 2021 Pseudostatic stability analysis of rock slopes using variational method. Ind. Geotech. J. 51(5): 935–951

  38. Lu N, Godt J W and Wu D T 2010 A closed‐form equation for effective stress in unsaturated soil. Water Resour. Res. 46(5): 1–14

  39. Van Genuchten M T 1980 A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44(5): 892–898

    Article  Google Scholar 

  40. Lu N and Likos W J 2004 Unsaturated soil mechanics. Wiley, Hoboken

    Google Scholar 

  41. Gardner W R 1958 Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci. 85(4): 228–232

    Article  Google Scholar 

  42. Yeh T C J 1989 One-dimensional steady state infiltration in heterogeneous soils. Water Resour. Res. 25(10): 2149–2158

    Article  Google Scholar 

  43. Srivastava R and Yeh T C J 1991 Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour. Res. 27(5): 753–762

    Article  Google Scholar 

  44. Lu N and Godt J W 2013 Hillslope hydrology and stability. Cambridge University Press, New York, pp 1–430

    Book  Google Scholar 

  45. Shahrokhabadi S, Vahedifard F, Ghazanfari E and Foroutan M 2019 Earth pressure profiles in unsaturated soils under transient flow. Eng. Geol. 260: 105218

    Article  Google Scholar 

  46. Richards L A 1931 Capillary conduction of liquids through porous mediums. J. Appl. Phys. 1(5): 318–333

    MATH  Google Scholar 

  47. Gu D P, Ling T H, Huang F and Zhang L 2020 Stability analysis of unsaturated slopes considering combined influences of strength non-homogeneity and non-saturation. Geotech. Geol. Eng. 38: 5535–5547

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author thanks for the support received from the “Science and Engineering Research Board (SERB), Government of India’’ under Grant Number SRG/2019/000149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manash Chakraborty.

Appendices

Appendix A

$$ {\text{GD}}\;{\text{SWCC}}\left[ {\displaystyle \frac{{\partial^{2} h_{m} }}{{\partial z^{2} }} + \alpha \left( {\displaystyle \frac{{\partial h_{m} }}{\partial z}} \right)^{2} } \right] + \alpha \displaystyle \frac{{\partial h_{m} }}{\partial z} = \displaystyle \frac{{\alpha \left( {\theta_{s} - \theta_{r} } \right)}}{{k_{s} }}\displaystyle \frac{{\partial h_{m} }}{\partial t} $$
(20)
$$ {\text{vG}}\;{\text{SWCC}}\left[ {\displaystyle \frac{1}{{\gamma_{w} }}\displaystyle \frac{{\partial^{2} h_{m} }}{{\partial z^{2} }} + \alpha \left( {\displaystyle \frac{{\partial h_{m} }}{\partial z}} \right)^{2} + \alpha \displaystyle \frac{{\partial h_{m} }}{\partial z}} \right] = - \displaystyle \frac{{mn\alpha \left( {\theta_{s} - \theta_{r} } \right)\left( {\alpha \gamma_{w} h_{m} } \right)^{n - 1} }}{{k_{s} \exp \left( {\alpha \gamma_{w} h_{m} } \right)\left\{ {1 + \left[ {\alpha \gamma_{w} h_{m} } \right]^{n} } \right\}^{m + 1} }}\frac{{\partial h_{m} }}{\partial t} $$
(21)

In terms of finite difference terms, the generalized equations for ith node can be written as:

$$ \left[ {\frac{{h_{m,i - 1}^{t + \Delta t} - 2h_{m,i}^{t + \Delta t} + h_{m,i + 1}^{t + \Delta t} }}{{\Delta z^{2} }} + \alpha \left[ {\frac{{h_{m,i + 1}^{t} - h_{m,i}^{t} }}{\Delta z}} \right]^{2} } \right] + \alpha \left[ {\frac{{h_{m,i + 1}^{t + \Delta t} - h_{m,i}^{t + \Delta t} }}{\Delta z}} \right] = \frac{1}{{L_{1} }}\frac{{h_{m,i}^{t + \Delta t} - h_{m,i}^{t} }}{\Delta t} $$
(22a)
$$ \Rightarrow - m_{1} h_{m,i - 1}^{t + \Delta t} + \left( {1 + 2m_{1} + m_{3} } \right)h_{m,i}^{t + \Delta t} - \left( {m_{1} + m_{3} } \right)h_{m,i + 1}^{t + \Delta t} = h_{m,i}^{t} + m_{2} \left( {h_{m,i + 1}^{t} - h_{m,i}^{t} } \right)^{2} $$
(22b)
$$ \begin{gathered} m_{1} = \frac{{L_{1} \Delta t}}{{\Delta z^{2} }},m_{2} = \frac{{L_{1} \alpha \Delta t}}{{\Delta z^{2} }},m_{3} = \frac{{L_{1} \alpha \Delta t}}{\Delta z};L_{1}^{GD} = \frac{{k_{s} }}{{\alpha \left( {\theta_{s} - \theta_{r} } \right)}};L_{1}^{vG} = \frac{{ - k_{s} e^{{\alpha \gamma_{w} h_{m,i}^{t} }} \left\{ {1 + \left[ {\alpha \gamma_{w} h_{m,i}^{t} } \right]^{n} } \right\}^{m + 1} }}{{mn\alpha^{n} \left( {\theta_{s} - \theta_{r} } \right)\left( {\gamma_{w} h_{m,i}^{t} } \right)^{n - 1} }} \hfill \\ h_{m,n + 2}^{t + \Delta t} = h_{m,n}^{t + \Delta t} + 2\Delta zQ\exp \left( { - \alpha \gamma_{w} h_{m,n + 1}^{t} } \right) - 2\Delta z \hfill \\ \end{gathered} $$
(22c)

Here,\(h_{m,i + 1}^{t} ,h_{m,i}^{t}\), and \(h_{m,i - 1}^{t}\) are the matric suction head at node i+1, i, and i−1 (as shown in Figure 2) at time t.

The simultaneous set of linear equation can be rewritten as:

$$ {\varvec{AH}}_{m}^{t + \Delta t} = {\varvec{B}} $$
(23)
$$ A = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ { - m_{1} } & {\left( {1 + 2m_{1} + m_{3} } \right)} & { - \left( {m_{1} + m_{3} } \right)} & 0 & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & { - m_{1} } & {\left( {1 + 2m_{1} + m_{3} } \right)} & { - \left( {m_{1} + m_{3} } \right)} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & { - m_{1} } & {\left( {1 + 2m_{1} + m_{3} } \right)} & { - \left( {m_{1} + m_{3} } \right)} \\ 0 & 0 & 0 & 0 & 0 & { - \left( {2m_{1} + m_{3} } \right)} & {\left( {1 + 2m_{1} + m_{3} } \right)} \\ \end{array} } \right]_{{\left( \begin{subarray}{l} n + 1 \\ \times n + 1 \end{subarray} \right)}} $$
$$ {\varvec{H}}_{m}^{t + \Delta t} = \left[ {\begin{array}{*{20}c} {h_{m,1}^{t + \Delta t} } & {h_{m,2}^{t + \Delta t} } & \ldots & \ldots & {h_{m,i - 1}^{t + \Delta t} } & {h_{m,i}^{t + \Delta t} } & {h_{m,i + 1}^{t + \Delta t} } & \ldots & \ldots & {\begin{array}{*{20}c} {h_{m,n}^{t + \Delta t} } & {h_{m,n + 1}^{t + \Delta t} } \\ \end{array} } \\ \end{array} } \right]_{1 \times (n + 1)}^{T} $$
$$ {\varvec{B}}^{{\varvec{t}}} = \left[ {\begin{array}{*{20}c} {B_{1} } & {B_{2} } & \ldots & \ldots & {B_{i - 1} } & {B_{i} } & {B_{i + 1} } & \ldots & \ldots & {B_{n} } & {B_{n + 1} } \\ \end{array} } \right]_{1 \times (n + 1)}^{T} $$
$$ B_{1} = 0;B_{i} = h_{m,i}^{t} + m_{2} \left( {h_{m,i + 1}^{t} - h_{m,i}^{t} } \right)^{2} ;B_{n} = h_{m,n}^{t} + m_{2} \left( {h_{m,n + 1}^{t} - h_{m,n}^{t} } \right)^{2} $$

Equation (23) is further solved by employing Gauss Elimination scheme.

Appendix B

(i) Two transversality conditions (applied at x0 and xn):

$$ [Q_{{y^{\prime } }} - F_{s} R_{{y^{\prime } }} ][f^{\prime } (x) - y^{\prime } (x)] + P - F_{s} R|_{{x = x_{0} }} = 0 \, $$
(24a)
$$ [Q_{{y^{\prime } }} - F_{s} R_{{y^{\prime } }} ][f^{\prime } (x) - y^{\prime } (x)] + P - F_{s} R|_{{x = x_{n} }} = 0 \, $$
(24b)

(ii) Two boundary conditions (applied at x0 and xn):

$$ y_{1} \left( {x_{0} } \right) = f_{1} (x_{0} ) $$
(25a)
$$ y_{n} \left( {x_{n} } \right) = f_{3} \left( {x_{n} } \right) $$
(25b)

(iii) (n−1) zeroth order continuity conditions applied at intermediate points:

$$ y_{i} (x_{i} ) = y_{i + 1} (x_{i} )\quad (i = 1,2,3,4, \ldots ,n - 1) $$
(26)

(iv) (n -1) first order continuity conditions applied at intermediate points:

$$ y_{i}^{\prime } (x_{i} ) = y_{i + 1}^{\prime } (x_{i} )\quad (i = 1,2,3,4, \ldots ,n - 1) $$
(27)

(v) The equation for Factor of Safety expressed as:

$$ F = \frac{{\int\limits_{{x_{0} }}^{{x_{1} }} {Q_{1} \left( {x,y,y^{\prime } } \right)dx + \int\limits_{{x_{1} }}^{{x_{2} }} {Q_{2} (x,y,y^{\prime } )dx + \int\limits_{{x_{2} }}^{{x_{3} }} {Q_{3} (x,y,y^{\prime } )dx} } } }}{{\int\limits_{{x_{0} }}^{{x_{1} }} {R_{1} \left( {x,y,y^{\prime } } \right)dx + \int\limits_{{x_{1} }}^{{x_{2} }} {R_{2} (x,y,y^{\prime } )dx + \int\limits_{{x_{2} }}^{{x_{3} }} {R_{3} (x,y,y^{\prime } )dx} } } }} $$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Chakraborty, M. Stability analysis of homogeneous unsaturated soil slopes by using the variational method. Sādhanā 47, 211 (2022). https://doi.org/10.1007/s12046-022-01974-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-022-01974-4

Keywords

Navigation