Skip to main content
Log in

Improved simplification technique for LTI systems using modified time moment matching method

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

A new simplification technique is proposed for reducing the large scale dynamic systems to the small scale dynamic systems by preserving input and output characteristics of the original system. The reduced order model is obtained using modified time moment matching method and basic mathematical technique. The reduced order denominator is determined by modified time-moment matching method. The reduced order numerator parameters are found by basic mathematical technique which is discussed in the proposed methodology. This method guarantees the stability of reduced order models if the original higher order systems are stable. This method gives close approximation with the original system in both transient and steady state responses. Moreover, the results show the superior performance of the proposed technique. The performance of the this technique is evaluated in terms of step and bode responses as well as integral square error (ISE), integral absolute error (IAE) and integral time absolute error (ITAE). These results are compared with the existing reduction techniques. Furthermore, the results illustrate the efficiency and effectiveness of the proposed technique. This method is appropriate for both single input single output (SISO) systems and multivariable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Obinata G and Anderson B 2001 Low order controller design, Model reduction for control system design. Springer-Verlag, London, Chapter 3, 93–128

  2. Shamash Y 1974 Stable reduced-order models using Pade type approximations. IEEE Trans. Autom. Contr 19: 615–616

    Article  MATH  Google Scholar 

  3. Lal M and Mitra R 1974 Simplification of large system dynamics using a moment evaluation algorithm. IEEE Trans. on Autom. Contr. 19: 602–603

    Article  MathSciNet  Google Scholar 

  4. Chen C. F and Shieh L S 1968 A novel approach to linear model simplification. Int. J. of Contr. 8: 561–570

    Article  Google Scholar 

  5. Hutton M F and Friedland B 1975 Routh approximations for reducing order of linear time invariant systems. IEEE Trans. on Autom. Contr., 20: 329–337

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen T C and Chang C Y 1979 Reduction of transfer functions by the stability-equation method. J. Franklin. Inst. 308: 389–404

    Article  MathSciNet  MATH  Google Scholar 

  7. Gutman P, Mannerfelt C F and Molander P 1982 Contributions to the model reduction problem. IEEE Trans. on Autom. Contr. 27: 454–455

    Article  MATH  Google Scholar 

  8. Parmar G, Prasad R and Mukherjee S 2007 A mixed method for large-scale systems modelling using eigen spectrum analysis and cauer second form. IETE J. of Res. 53: 93–102

    Article  Google Scholar 

  9. Prajapati A K and Prasad R 2018 Order reduction of linear dynamic systems by improved Routh approximation method. IETE J. of contr. 1–14 https://doi.org/10.1080/03772063.2018.1452645

  10. Chen T C, Chang C Y and Han K W 1980 Stable reduced-order Pade approximants using stability-equation method. Electr. Lett. 16: 345–346

    Article  Google Scholar 

  11. Singh N and Prasad R and Gupta H O 2006 Reduction of linear dynamic systems using Routh Hurwitz array and factor division method. IETE J. Educ. 47: 25–29

    Article  Google Scholar 

  12. Sikander A and Prasad R 2015 Linear time-invariant system reduction using a mixed methods approach. Appl. Math. Model. 39: 4848–4858

    Article  MathSciNet  MATH  Google Scholar 

  13. Kumar J, Parmar G 2020 WOA based reduced order modeling of LTIC systems. Int. J. of Advanced Trends in Computer Science and Eng. 9: 4315–4321

  14. Goyal R, Parmar G and Sikander A 2019 A new approach for simplification and control of linear time invariant systems. Microsystem Technologies. 25: 599–607

    Article  Google Scholar 

  15. Pade H, 1892 Sur La representation approaches dune function par des fraction rationelles.Annales Scientifiques de IEcole Normale Supieure. 9: 1–93

  16. Shamash Y 1975 Model reduction using the Routh stability criterion and the Pade approximation technique. Int. J. Contr., 21: 475-484

    Article  MATH  Google Scholar 

  17. Pal J 1979 Stable reduced-order Pade approximants using the Routh-Hurwitz array. Electr. Lett. 15: 225–226

    Article  Google Scholar 

  18. Chen T C, Chang C Y and Han K W 1980 Model reduction using the stability-equation method and the Pade approximation method. J. Franklin Inst. 309: 473–490

    Article  MathSciNet  MATH  Google Scholar 

  19. Wan B W 1981 Linear model reduction using Mihailov criterion and Pade approximation technique. Int. J. Contr. 33: 1073–1089

    Article  MathSciNet  MATH  Google Scholar 

  20. Vishwakarma C B 2011 Order reduction using modified pole clustering and Pade approximations. Int. J. Electr. Comput. Energy Electron. Commun. Eng. 5: 998–1002

    MathSciNet  Google Scholar 

  21. Wall H S 1945 Polynomials whose zeros have negative real parts. Amer. Math. Mon. 52: 308–322

    Article  MathSciNet  MATH  Google Scholar 

  22. Frank E 1946 On the zeros of polynomial with complex coefficients. Amer. Math. Mon. 52: 144–157

    MathSciNet  MATH  Google Scholar 

  23. Chen C F and Shieh L S 1970 An algebraic method for control system design. Int. J. Contr. 11: 717–739

    Article  MATH  Google Scholar 

  24. Shieh L S, Schneider W P and Williams D R, 1971 A chain of factored matrices for Routh array inversion and continued fraction inversion. Int. J. Contr. 13: 691–703

    Article  MATH  Google Scholar 

  25. Shieh L S and Goldman M J 1974 Continued fraction expansion and inversion of the Cauer third form. IEEE Trans. on Circuits and Sys. 21: 341–345

    Article  MathSciNet  Google Scholar 

  26. Chen C F 1972 Model reduction of multivariable control systems by means of matrix continued fractions. IFAC Proce. 5: 145–152

    Article  Google Scholar 

  27. Shieh L S, Navarro J M and Yates R 1974 Multivariable systems identification via frequency responses. IEEE Proc. 62: 1169–1171

    Article  Google Scholar 

  28. Shieh L S and Gaudiano F 1975 Some properties and applications of matrix continued fraction. IEEE Trans. on Circuits and Sys. 22: 721–728

    Article  MathSciNet  Google Scholar 

  29. Calfe M R and Healey M 1974 Continued-fraction model-reduction technique for multivariable systems. Proc. IEE 121: 393–395

    Google Scholar 

  30. Bandyopadhyay B, Ismail O and Gorez R 1994 Routh Pade approximation for interval systems. IEEE Trans. on Autom. Contr. 39: 2454–2456

    Article  MathSciNet  MATH  Google Scholar 

  31. Bandyopadhyay B, Upadhye A and Ismail O 1997 \(\gamma \)-\(\delta \) Routh approximation for interval systems. IEEE Trans. on Autom. Contr. 42: 1127–1130

    Article  MathSciNet  MATH  Google Scholar 

  32. Sastry G V K R, Raja R R and Mallikarjuna R P 2000 Large scale interval system modelling using Routh approximants. Electron. lett. 36: 768–769

    Article  Google Scholar 

  33. Bandyopadhyay B, Sreeram V and Shingare P 2008 Stable \(\gamma \)-\(\delta \) Routh approximation of interval systems using Kharitonov polynomials. Int. J. Information and Sys. Sciences 4: 348–361

    MathSciNet  MATH  Google Scholar 

  34. Ismail O, Bandyopadhyay B and Gorez R 1997 Discrete interval system reduction using Padé approximation to allow retention of dominant poles. IEEE Trans. on Circuits and Systems-I: Fundamental theory and applications 44: 1075–1078

  35. Potturu S R and Prasad R 2018 Order reduction of interval systems using stability equation method and Kharitonov’s theorem. In: Proc. American control conference (ACC), Milawaukee USA, pp. 6224–6229

  36. Tanwar N S, Rajesh B and Girish P 2017 Order reduction of interval systems using Big Bang Big Crunch and Routh Approximation. IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES). pp. 1–5

  37. Kumar J, Sikander A, Mehrotra M and Parmar G 2019 A new soft computing approach for order diminution of interval system. Int. J. Syst. Assur. Eng. Manag. 1–8

  38. Paynter H M and Takahashi Y 1956 A new method of evaluating dynamic response of counter-flow and parallel-flow heat exchangers. Trans. ASME, J. of Dynamic Systems Measurement and Contr. 78: 749–753

  39. Biradar S, Hote Y V and Saxena S 2016 Reduced-order modeling of linear time invariant systems using big bang big crunch optimization and time moment matching method. Appl. Mathe. Modell. 40: 7225–7244

    Article  MathSciNet  MATH  Google Scholar 

  40. Ramesha K, Girish G R and Mahalakshmi K 2017 Approximation and optimization of discrete systems using order reduction technique. Energy Procedia 117: 761–768

    Article  Google Scholar 

  41. Prasad R 2000 Pade type model order reduction for multivariable systems using Routh approximation. Comput. Electr. Eng. 26: 445–459

    Article  MATH  Google Scholar 

  42. Shamash Y 1981 Truncation method of reduction: A viable alternative. Electron. Lett. 17: 97–99

    Article  MathSciNet  Google Scholar 

  43. Krishnamurthy V V and Seshadri V 1978 Model reduction using the Routh stability criterion. IEEE Trans. on Autom. Contr. 23: 729–731

    Article  Google Scholar 

  44. Moore B C 1981 Principal component analysis in control system: controllability, observability, and model reduction. IEEE Trans. on Autom. Contr. 26: 17–36

    Article  MATH  Google Scholar 

  45. Sikander A and Prasad R 2017 A new technique for reduced order modelling of linear time invariant system. IETE J. Res. 63: 316–324

    Article  Google Scholar 

  46. Narwal A and Prasad R 2016 Order reduction of LTI systems and their qualitative comparison. IETE Tech. Rev. 34: 655–663

    Article  Google Scholar 

  47. Vishwakarma C B 2011 Order reduction using modified pole clustering and Pade approximation. World Acad. Sci. Eng. Technol. 5: 1003–1007

    MathSciNet  Google Scholar 

  48. Abu-Al-Nadi D, Alsmadi O and Abo-Hammour Z 2011 Reduced order modeling of linear MIMO systems using particle swarm optimization. In: The Seventh Int. Conf. on Autonomic and Autonomous Sys. Venice/Mestre, pp. 62–66

  49. Bansal J C, Sharma H and Arya K V 2011 Model order reduction of single input single output systems using artificial bee colony optimization algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2011) Berlin: Springer, pp. 85–100

  50. Parmar G, Mukherjee S and Prasad R, 2007 System reduction using factor division algorithm and eigen spectrum analysis. Appl. Math. Model. 31: 2542–2552

    Article  MATH  Google Scholar 

  51. Mukherjee S, Satakshi and Mittal R C 2005 Model order reduction using response matching technique. J. Franklin Inst. 342: 503–519

    Article  MathSciNet  MATH  Google Scholar 

  52. Mittal A K, Prasad R and Sharma S P 2004 Reduction of linear dynamic systems using an error minimization technique. J. Inst. Eng. India IE (I) J. EL 84: 201–206

    Google Scholar 

  53. Prasad R and Pal J 1991 Stable reduction of linear systems by continued fractions. J. Inst. Eng. India IE (I) J. EL 72: 113–116

    Google Scholar 

  54. Mukherjee S and Mishra R N 1987 Order reduction of linear systems using an error minimization technique. J. Franklin Inst. 323: 23—32

    Article  MathSciNet  MATH  Google Scholar 

  55. Narwal A and Prasad R 2016 Optimization of LTI systems using modified clustering algorithm. IETE Tech. Rev. 34: 201–213

    Article  Google Scholar 

  56. Narwal A and Prasad R 2015 A novel order reduction approach for LTI systems using cuckoo search optimization and stability equation. IETE J. Res. 62: 154–163

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Electrical Engineering, Indian Institute of Technology Roorkee (IITR), and Ministry of Human Resource Development (MHRD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudharsana Rao Potturu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potturu, S.R., Prasad, R. & Meshram, R. Improved simplification technique for LTI systems using modified time moment matching method. Sādhanā 46, 126 (2021). https://doi.org/10.1007/s12046-021-01647-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-021-01647-8

Keywords

Navigation