Skip to main content
Log in

Multi-fidelity surrogate model-based airfoil optimization at a transitional low Reynolds number

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The aerodynamic design optimization of an airfoil is carried out at a transitional low Reynolds number in the framework of multi-fidelity surrogate modeling. Two multi-fidelity surrogate-based optimization methodologies are proposed. The first method involves the co-Kriging surrogate model with prediction-based high-fidelity model update strategy. The second method uses the Kriging model of the low-fidelity function, and subsequent co-Kriging modeling with high-fidelity infills done using the gradient-free trust-region approach. The high-fidelity solutions are obtained by solving the Reynolds-averaged Navier-Stokes equations with the flow transition modeled by the γ-Reθ model. The low-fidelity solutions are obtained by a panel code in conjunction with the eN method. The proposed optimization methodologies are applied to two different objective functions in the transitional low Reynolds number regime, namely, (i) maximization of lift coefficient, and (ii) maximization of endurance factor. Significant improvements in each of the objective functions are obtained using both these methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. McMasters J H and Henderson M L 1980 Low-speed single-element airfoil synthesis. Tech. Soar. 6: 1–21

    Google Scholar 

  2. Schlichting H and Gersten K 2017 Boundary-Layer Theory; 9th edn. Springer, Berlin

    Book  Google Scholar 

  3. Mueller T J and DeLaurier J D 2003 Aerodynamics of small vehicles. Ann. Rev. Fluid Mech. 35: 89–111

    Article  Google Scholar 

  4. Hicks R M and Henne P A 1978 Wing design by numerical optimization. J. Aircr. 15: 407–412

    Article  Google Scholar 

  5. Jameson A 1988 Aerodynamic design via control theory. J. Sci. Comput. 3: 233–260

    Article  Google Scholar 

  6. Goldberg D E 2008 Genetic Algorithms in Search, Optimization and Machine Learning. Pearson India, New Delhi

    Google Scholar 

  7. Smith A M O 1956 Transition, Pressure Gradient, and Stability Theory; Douglas Aircraft Co., p 26388

    Google Scholar 

  8. van Ingen J L 1956 A suggested semi-empirical method for the calculation of the boundary layer transition region. TU Delft Report No. VTH-74

  9. Arnal D, Casalis G and Houdeville R 2009 Practical transition prediction methods: subsonic and transonic flows. In: VKI Lecture Series: Advances in Laminar-Turbulent Transition Modeling, RTO-EN-AVT-151

  10. Coder J G and Maughmer M D 2014 Computational Fluid Dynamics compatible transition modeling using an amplification factor transport equation. AIAA J. 52: 2506–2512

    Article  Google Scholar 

  11. Amoignon O, Pralits J, Hanifi A, Berggren M and Henningson D 2006 Shape optimization for delay of laminar-turbulent transition. AIAA J. 44: 1009–1024

    Article  Google Scholar 

  12. Driver J and Zingg D W 2007 Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction. AIAA J. 45: 1810–1818

    Article  Google Scholar 

  13. Rashad R and Zingg D W 2016 Aerodynamic shape optimization for natural laminar flow using a discrete-adjoint approach. AIAA J. 54: 3321–3337

    Article  Google Scholar 

  14. Han Z H, Chen J, Zhang K S, Xu Z M, Zhu Z and Song W P 2018 Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach. AIAA J. 56: 2579–2593

    Article  Google Scholar 

  15. Halila G L O, Martins J R R A and Fidkowski K J 2020 Adjoint-based aerodynamic shape optimization including transition to turbulence effects. Aerosp. Sci. Technol. 107: 106243

    Article  Google Scholar 

  16. Menter F R, Langtry R B, Likki S R and Suzen Y B 2006 A correlation-based transition model using local variables- Part I: model formulation. J. Turbomach. 128: 413–422

    Article  Google Scholar 

  17. Khayatzadeh P and Nadarajah S K 2012 Aerodynamic shape optimization of Natural Laminar Flow (NLF) airfoils. AIAA 2012-0061

  18. Zhang Y, Fang X, Chen H, Fu S, Duan Z and Zhang Y 2015 Supercritical natural laminar flow airfoil optimization for regional aircraft wing design. Aerosp. Sci. Technol. 43: 152–164

    Article  Google Scholar 

  19. Robitaille M, Mosahebi A and Laurendeau E 2015 Design of adaptive transonic laminar airfoils using the γ-Reθt transition model. Aerosp. Sci. Technol. 46: 60–71

    Article  Google Scholar 

  20. Queipo N, Haftka R, Shyy W, Goel T, Vaidyanathan R and Tucker P 2005 Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41: 1–28

    Article  Google Scholar 

  21. Forrester A I J, Sóbester A and Keane A J 2008 Engineering Design Via Surrogate Modelling: A Practical Guide. Wiley, Chichester

    Book  Google Scholar 

  22. Sacks J, Welch W J, Mitchell T J, and Wynn H 1989 Design and analysis of computer experiments. Stat. Sci. 4: 409–423

    MathSciNet  MATH  Google Scholar 

  23. Toal D, Bressloff N and Keane A 2008 Kriging hyperparameter tuning strategies. AIAA J. 46: 1240–1252

    Article  Google Scholar 

  24. Kennedy M C and O’Hagan A 2000 Predicting the output from a complex computer code when fast approximations are available. Biometrika 87: 1–13

    Article  MathSciNet  Google Scholar 

  25. Forrester A I J, Sóbester A and Keane A J 2007 Multi-fidelity optimization via surrogate modelling. Proc. R. Soc. A 463: 3251–3269

    Article  MathSciNet  Google Scholar 

  26. Morris M D and Mitchell T J 1995 Exploratory designs for computational experiments. J. Stat. Plan. Inference 43: 381–402

    Article  Google Scholar 

  27. Coleman T F and Li Y 1996 An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6: 418–445

    Article  MathSciNet  Google Scholar 

  28. Alexandrov N M, Dennis J E, Lewis R M, and Torczon V 1998 A trust-region framework for managing the use of approximation models in optimization. Str. Opt. 15: 16–23

    Article  Google Scholar 

  29. Alexandrov N M, Lewis R M, Gumbert C R, Green L L and Newman P A 2001 Approximation and model management in aerodynamic optimization with variable-fidelity models. J. Aircr. 38: 1093–1101

    Article  Google Scholar 

  30. Long T, Li X, Shi R, Liu J, Guo X and Liu L 2018 Gradient-free trust-region-based adaptive response surface method for expensive aircraft optimization. AIAA J. 56: 862–873

    Article  Google Scholar 

  31. ANSYS Fluent Theory Guide 2013 Release 15.0. Canonsburg: ANSYS Inc.

  32. Darwish M, Sraj I and Moukalled F 2009 A coupled finite volume solver for the solution of incompressible flows on unstructured grids. J. Comput. Phys. 228: 180–201

    Article  MathSciNet  Google Scholar 

  33. Menter F R 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32: 1598–1605

    Article  Google Scholar 

  34. Celik I B, Ghia U, Roache P J, Freitas C J, Coleman H and Raad P E 2008 Procedure for estimation of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130: 078001

    Article  Google Scholar 

  35. Kim D H, Yang J H, Chang J W and Chung J 2009 Boundary layer and near-wake measurements of NACA 0012 airfoil at low Reynolds numbers. AIAA 2009-1472

  36. Kim D H, Chang J W and Chung J 2011 Low-Reynolds-number effect on aerodynamic characteristics of a NACA 0012 airfoil. J. Aircr. 48: 1212–1215

    Article  Google Scholar 

  37. Istvan M S, Kurelek J W and Yarusevych S 2018 Turbulence intensity effects on laminar separation bubbles formed over an airfoil. AIAA J. 56: 1335–1347

    Article  Google Scholar 

  38. XFLR5 2010 Analysis of foils and wings operating at low Reynolds numbers. Guidelines for XFLR5, Version 6.01

  39. Drela M 1989 XFOIL: An analysis and design system for low Reynolds number airfoils. In: Low Reynolds Number Aerodynamics (ed) Mueller T. J., Springer

    Google Scholar 

  40. Drela M and Giles M B 1987 Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25: 1347–1355

    Article  Google Scholar 

  41. Mack L M 1977 Transition and laminar instability. JPL Publication 77-15 (also NASA-CP-153203)

  42. van Ingen J L 2008 The eN method for transition prediction. Historical review of work at TU Delft. AIAA 2008-3830

  43. Morgado J Vizinho R Silvestre J C and Páscoa J C 2016 XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils. Aerosp. Sci. Technol. 52: 207–214

    Article  Google Scholar 

  44. Pines D J and Bohorquez F 2006 Challenges facing future micro-air vehicle development. J. Aircr. 43: 290–305

    Article  Google Scholar 

  45. Gundlach J 2014 Designing Unmanned Aircraft Systems: A Comprehensive Approach, 2nd edn. AIAA, Reston, VA

    Book  Google Scholar 

  46. Samareh J A 2001 Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization. AIAA. J. 39: 877–884

    Article  Google Scholar 

  47. Sobester A and Forrester A I J 2015 Aircraft Aerodynamic Design: Geometry and Optimization. Wiley, Chichester

    Google Scholar 

  48. Pranesh C, Sivapragasam M, Deshpande M D and Narahari H K 2019 Negative lift characteristics of NACA 0012 aerofoil at low Reynolds numbers Sādhanā 44: 21

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Sivapragasam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, R., Sivapragasam, M. Multi-fidelity surrogate model-based airfoil optimization at a transitional low Reynolds number. Sādhanā 46, 58 (2021). https://doi.org/10.1007/s12046-021-01580-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-021-01580-w

Keywords

Navigation