Skip to main content

Advertisement

Log in

Limitations of Flight Path Reconstruction techniques

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

The Flight Path Reconstruction (FPR) techniques are performed to verify the data compatibility check and post-flight. This is often achieved by calibrating the onboard sensors such as inertial and airdata sensors. In this paper, the limitations of FPR techniques in terms of Maximum Likelihood Estimation (MLE) and Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) have been reported. To demonstrate the FPR and sensor calibration, kinematic trajectory simulations with wind box type maneuvers have been performed. It is also shown as how a kinematic simulation is valid for the studies carried out in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Jategaonkar R V 2006 Data compatibility check. In: Flight Vehicle System Identification A Time Domain Methodology. Chapter 10, Volume 216, Reston, Virginia, AIAA, pp. 335–350

  2. Morelli E A 2002 System Identification Programs for Aircraft (SIDPAC). AIAA, Reston

    Book  Google Scholar 

  3. Morelli E A 2003 Low-order equivalent system identification for the Tu-144LL supersonic transport aircraft. J. Guid. Control Dyn. 26: 354–362

    Article  Google Scholar 

  4. Morelli E A and Klein V 2005 Application of system identification to aircraft at NASA Langley Research Center. J. Aircraft 2: 12–25

    Article  Google Scholar 

  5. Mulder J A, Chu Q P, Sridhar J K, Breeman J H and Laban M 1999 Non-linear aircraft flight path reconstruction review and new advances. Prog. Aerosp. Sci. 35: 673–726

    Article  Google Scholar 

  6. Kamali C, Jain S, Sarf A and Goyal A 2016 Calibration of static pressure sensors using Extended Kalman Filter at high angles of attack and transonic mach numbers. IEEE Xplore. http://doi.org/10.1109/INDIANCC.2016.7441170

  7. Jain S, Kamali C, Yarlagadda Y, Saraf A and Goyal A 2017 Calibration and accuracy determination of airdata system for a modern fighter. AIAA SciTech Forum, (AIAA 2017-1868). https://doi.org/10.2514/6.2017-1868

  8. Kamali C, Jain S and Saraf A 2016 Novel method for static pressure calibration using Unscented Kalman Filter. IFAC-PapersOnLine 49: 646–651. https://doi.org/10.1016/j.ifacol.2016.03.129

    Article  Google Scholar 

  9. Kamali C, Jain S, Yarlagadda Y and Saraf A 2017 Airdata calibration using error state filter. In: AIAA Atmospheric Flight Mechanics Conference, AIAA AVIATION Forum, (AIAA 2017-3895). https://doi.org/10.2514/6.2017-3895

  10. Evans R J, Goodwin G C, Feik R A, Martin C and Lozano-Leal R 1985 Aircraft flight data compatibility checking using maximum likelihood and Extended Kalman Filter estimation. IFAC 18: 487–492

    Google Scholar 

  11. Girija G and Raol J R 1993 PC based flight path reconstruction using UD factorization filtering algorithm. Def. Sci. J. 43: 429–447

    Article  Google Scholar 

  12. Parameswaran V and Jategaonkar R V 2004 Calibration of 5 hole probe for flow angles from advanced technologies testing aircraft system flight data. Def. Sci. J. 54: 111–123

    Article  Google Scholar 

  13. Nusrath K, Sarmah A and Singh J 2014 Flight path reconstruction and wind estimation using flight test data from Crash Data Recorder (CDR). SAE Technical Paper 2014-01-2168, 2014. https://doi.org/10.4271/2014-01-2168

  14. Majeed M and Kar I N 2011 Multi sensor data fusion based approach for the calibration of airdata systems. Aeronaut. J. 115: 113–122

    Article  Google Scholar 

  15. Etkin B 1972 Dynamics of atmospheric flight. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Kamali.

Appendices

Appendix

The Equations of Motion (EOM) for the simulation is derived from point mass model as follows:

$$ \dot{V}m = T\cos \alpha - D - W\sin \gamma $$
(25)
$$ \dot{\gamma }mV = (L + T\sin \alpha )\cos \mu - W\cos \gamma $$
(26)
$$ \dot{\chi }mV\cos \gamma = (L + T\sin \alpha )\sin \mu $$
(27)
$$ \begin{aligned} \dot{x} & = V\cos \gamma \cos \chi \\ \dot{y} & = V\cos \gamma \sin \chi \\ \dot{h} & = V\sin \gamma \\ \end{aligned} $$
(28)

For constant flight path angle and small angles of attack Eq. (26) reduces to

$$ L\cos \mu = W\cos \gamma = mg\cos \gamma $$
(29)

We know

$$ N_{z} = \frac{L}{mg} $$
(30)
$$ \sqrt {L^{2} \sin^{2} \mu + L^{2} \cos \mu } = \sqrt {L^{2} } = L $$
(31)
$$ \frac{{V\dot{\chi }}}{g} = \frac{L\sin \mu }{mg\cos \gamma } $$
(32)

Substitute Eqs. (29) and (32) in Eq. (31)

$$ L = \sqrt {\left( {\frac{{V^{2} \dot{\chi }}}{{g^{2} }}^{2} } \right)m^{2} g^{2} \cos^{2} \gamma + m^{2} g^{2} \cos^{2} \gamma } $$
(33)

Substitute (33) in (30)

$$ N_{Z} = \sqrt {\frac{{\left( {\frac{{V^{2} \dot{\chi }}}{{g^{2} }}^{2} } \right)m^{2} g^{2} \cos^{2} \gamma }}{{m^{2} g^{2} }} + \frac{{m^{2} g^{2} \cos^{2} \gamma }}{{m^{2} g^{2} }}} $$

Hence

$$ \begin{aligned} N_{Z} & = \sqrt {\left( {\frac{{V^{2} \dot{\chi }}}{{g^{2} }}^{2} } \right)\cos^{2} \gamma + \cos^{2} \gamma } \\ N_{Z} & = \sqrt {1 + \left( {\frac{{V^{2} \dot{\chi }}}{{g^{2} }}^{2} } \right)} \cos \gamma \\ \end{aligned} $$
(34)

Equation (30) can be written as:

$$ \begin{aligned} N_{Z} & = \frac{{0.5\rho V^{2} C_{L\alpha } \alpha }}{mg} \\ \theta & \approx \alpha = \frac{{N_{Z} K}}{{V^{2} }} + \gamma \\ \end{aligned} $$
(35)

Nomenclature

\( \vec{X}_{Earth} \) :

Position in the Earth coordinate

\( \dot{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {X} }_{Earth} ,V \) :

Velocity in the Earth coordinate

\( \ddot{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {X} }_{Earth} \) :

Accelerations in the Earth coordinate

\( \Phi \) :

Euler angles

\( \phi \) :

Bank angle

\( \theta \) :

Pitch angle

\( \psi \) :

Yaw angle

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {g} \) :

Gravity vector

\( \dot{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {X} }_{AC} ,TAS \) :

Velocity in the body frame relative to wind

W :

Wind vector in the inertial frame

\( \alpha \) :

Angle of attack

\( \beta \) :

Sideslip angle

TAS :

True Air Speed

\( V_{Tbias} ,V_{Tscale} \) :

TAS bias/offset and scale factor

\( \alpha_{bias} \,\,\alpha_{scale} \,\,\beta_{bias} \,\,\beta_{scale} \) :

AoA bias/offset, AoA scale factor, AoSS bias/offset, AoSS scale factor

\( u,v,w \) :

Velocities in the body frame

\( u_{wi} ,v_{wi} ,w_{wi} \) :

Wind velocities in the inertial frame

P:

Position vector

\( N_{xb} \) \( N_{yb} \) \( N_{zb} \) :

Accelerometer bias

\( p_{b} \,\,q_{b} \,\,r_{b} \) :

Gyro bias

Suffix ‘m’:

Indicates measurement

ADS:

Air Data System

p q r :

Rates

\( N_{x} \) \( N_{y} \) \( N_{z} \) :

Accelerations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamali, C., Ozger, E. Limitations of Flight Path Reconstruction techniques. Sādhanā 44, 32 (2019). https://doi.org/10.1007/s12046-018-1019-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12046-018-1019-3

Keywords

Navigation