Skip to main content

Advertisement

Log in

Parameter estimation of linear and quadratic chirps by employing the fractional fourier transform and a generalized time frequency transform

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

This paper is targeted towards a general readership in signal processing. It intends to provide a brief tutorial exposure to the Fractional Fourier Transform, followed by a report on experiments performed by the authors on a Generalized Time Frequency Transform (GTFT) proposed by them in an earlier paper. The paper also discusses the extension of the uncertainty principle to the GTFT. This paper discusses some analytical results of the GTFT. We identify the eigenfunctions and eigenvalues of the GTFT. The time shift property of the GTFT is discussed. The paper describes methods for estimation of parameters of individual chirp signals on receipt of a noisy mixture of chirps. A priori knowledge of the nature of chirp signals in the mixture – linear or quadratic is required, as the two proposed methods fall in the category of model-dependent methods for chirp parameter estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Almeida L B 1994 The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42: 3084–3091

    Article  Google Scholar 

  • Bultheel A and Martinez H 2003 A shattered survey of the Fractional Fourier Transform

  • Cai L 2000 Special affine Fourier transformation in frequency-domain. Optics Commun. 185: 271–276

    Article  Google Scholar 

  • Chassande-Mottin E and Flandrin P 1999 On the time frequency detection of chirps. Appl. Comput. Harmonic Anal. 6: 252–281

    Article  MathSciNet  MATH  Google Scholar 

  • Djuric P M and Kay S M 1990 Parameter estimation of chirp signals. IEEE Trans. Acoutics Speech Signal Process. 38: 12

    Google Scholar 

  • Gal J, Campeanu A and Nafornita I 2011 The estimation of chirp signals parameters by an extended Kalman filtering algorithm. In: Signals, Circuits and Systems (ISSCS), 2011 10th International Symposium on, vol., no., pp. 1–4

  • Ma Min, Cai J and Zhang X 2010 An estimation algorithm of chirp based on fractional fourier transform and frequency domain differential. In: Computational Problem-Solving (ICCP), 2010 International Conference on, vol., no., pp. 218–221

  • Namias V 1980 The Fractional Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl. 25: 241–265

    Article  MathSciNet  MATH  Google Scholar 

  • Ozaktas H, Arikan O, Kutay A and Bozdagi G 1996 Digital computation of the fractional fourier transform. IEEE Trans. Signal Process. 44: 9

    Google Scholar 

  • Roshen Jacob, Tessamma Thomas and Unnikrishnan A 2009 Applications of Fractional Fourier Transform in sonar signal processing. IETE J. Res. 55: 16–27

    Article  Google Scholar 

  • Shinde S. and Gadre V. 2001 An uncertainty principle for real signals in the Fractional Fourier transform domain. IEEE Trans. Signal Process. 49: 11

    MathSciNet  Google Scholar 

  • Shishir Sahay, Deepak Pande, Vikram Gadre and Prashant Sohani 2012a A novel generalized time-frequency transform inspired by the Fractional Fourier Transform for higher order chirps. In: International Conference on Signal Processing (SPCOM)

  • Sahay, Pande D, Vikram Gadre and Prashant Sohani 2012b Model-independent approach for chirp parameter estimation employing collection of filters. In: National Conference on Communications (NCC)

  • http://www.mathworks.in/matlabcentral/fileexchange/41351-frft-m/content/frft.m

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T MEGHASYAM.

A. Appendix

A. Appendix

1.1 A.1 Proof of time shift property in GTFT

Suppose Y α (u) is the GTFT of y(t) at angle α with f(t)=k t 3, for a constant k,

$$ \text{i.e. } Y_{\alpha}(u)={\int}_{-\infty}^{\infty}{y(t)K_{\alpha,f}(u,t)\text{d}t}. $$
(62)

Our aim is to find the GTFT of y 1(t)=y(tt 0) at same angle and with same function f(t).

$$ \begin{array}{lllll} Y_{\alpha}^{1}(u)&={\int}_{-\infty}^{\infty}{y(t-t_{0})K_{\alpha,f}(u,t)\text{d}t}\\ &={\int}_{-\infty}^{\infty}{y(t-t_{0})K_{\alpha,f}(u,t)\text{d}t}\\ &=\sqrt{\frac{1-j\cot \alpha}{2{\pi}}}{\int}_{-\infty}^{\infty}{y(t-t_{0})e^{j[\frac{u^{2}}{2}\cot(\alpha)+\frac{t^{2}}{2}\cot(\alpha)-ut\csc(\alpha)+ku^{3}-kt^{3}]}\text{d}t}. \end{array} $$
(63)

Substitute t=t 0+τ

$$ Y_{\alpha}^{1}(u)=\sqrt{\frac{1-j\cot \alpha}{2{\pi}}}{\int}_{-\infty}^{\infty}{y(\tau)e^{j[\frac{u^{2}}{2}\cot(\alpha)+\frac{(\tau+t_{0})^{2}}{2}\cot(\alpha)-u(\tau+t_{0})\csc(\alpha)+ku^{3}-k(\tau+t_{0})^{3}]}\text{d}\tau}. $$
(64)

Consider two new variables-

$$ \cot\beta=\cot\alpha-6kt_{0}. $$
(65)
$$ \text{and \hspace{0.4cm} } \mu=\sin\beta(u\csc\alpha +3k{t_{0}^{2}}-t_{0}\cot\alpha)\\ $$
(66)

Substituting these variables in (5), we get,

$$ \begin{array}{lllll} Y_{\alpha}^{1}(u)=\sqrt{\frac{1-j\cot \alpha}{2{\pi}}}{\int}_{-\infty}^{\infty}{y(\tau)e^{j[\frac{\mu^{2}}{2}\cot(\beta)+\frac{\tau^{2}}{2}\cot(\beta)-\mu\tau\csc(\beta)+k\mu^{3}-k\tau^{3}]}}\\ {\cdot}e^{j[\frac{u^{2}}{2}\cot\alpha+ku^{3}-ut_{0}\csc\alpha+\frac{{t_{0}^{2}}}{2}\cot\alpha -k{t_{0}^{3}}-\frac{\mu^{2}}{2}\cot\beta-k\mu^{3}]}\text{d}\tau. \end{array} $$
(67)

But, by definition

$$ K_{\beta,f}(\mu,\tau)=\sqrt{\frac{1-j\cot \alpha}{2{\pi}}}e^{j[\frac{\mu^{2}}{2}\cot(\beta)+\frac{\tau^{2}}{2}\cot(\beta)-\mu\tau\csc(\beta)+k\mu^{3}-k\tau^{3}]}. $$
(68)

Therefore,

$$ \begin{array}{lllll} Y_{\alpha}^{1}(u)&={\int}_{-\infty}^{\infty}{y(\tau)K_{\beta,f}(\mu,\tau) e^{j[\frac{u^{2}}{2}\cot\alpha+ku^{3}-ut_{0}\csc\alpha+\frac{{t_{0}^{2}}}{2}\cot\alpha -k{t_{0}^{3}}-\frac{\mu^{2}}{2}\cot\beta-k\mu^{3}]}\text{d}\tau}\\ &=e^{j[\frac{u^{2}}{2}\cot\alpha+ku^{3}-ut_{0}\csc\alpha+\frac{{t_{0}^{2}}}{2}\cot\alpha -k{t_{0}^{3}}-\frac{\mu^{2}}{2}\cot\beta-k\mu^{3}]}{\int}_{-\infty}^{\infty}{y(\tau)K_{\beta,f}(\mu,\tau)\text{d}\tau}\\ &=e^{j[\frac{u^{2}}{2}\cot\alpha+ku^{3}-ut_{0}\csc\alpha+\frac{{t_{0}^{2}}}{2}\cot\alpha -k{t_{0}^{3}}-\frac{\mu^{2}}{2}\cot\beta-k\mu^{3}]}Y_{\beta}(\mu). \end{array} $$
(69)

This is the time shift property of the GTFT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SAHAY, S.B., MEGHASYAM, T., ROY, R.K. et al. Parameter estimation of linear and quadratic chirps by employing the fractional fourier transform and a generalized time frequency transform. Sadhana 40, 1049–1075 (2015). https://doi.org/10.1007/s12046-015-0380-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-015-0380-8

Keywords

Navigation