Skip to main content
Log in

Attosecond Physics in a Nutshell

Pushing the Frontier of Ultrafast Science and Technology

  • General Article
  • Published:
Resonance Aims and scope Submit manuscript

Abstract

Since the invention of laser, a huge number of new technological advancements have happened, along with the generation of new basic science knowledge, which has paved the way to study and control matter on femtosecond and attosecond time scales. Since 2001, ultrafast science has ushered into the attosecond era, with the generation, characterization, and applications of coherent attosecond pulses of light. Experimental methods to generate attosecond pulses of light to study electron dynamics in matter have been awarded the Nobel Prize in Physics 2023. In this article, we provide a pedagogical overview of the physics and technology behind attosecond pulses and their applications in exploring the dynamics of matter on an ever-shorter time scale. We begin with milestones that led to the attosecond era and explain the basic mechanism behind the generation and characterization of attosecond pulses. We describe the experimental implementation of the attosecond setup and discuss some applications in resolving the attosecond phenomenon. Emerging directions in this new field are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Suggested Reading

  1. Richard P Feynman, Robert B Leighton, and Matthew Sands, The Feynman Lectures on Physics, Vol.1: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat, volume 1. Basic books, 2011.

  2. Samsung. Samsung camera, https://www.samsung.coin/in/support/mobile-devices/galaxy-s10-super-slow-mo/

  3. https://stanfordmag.org/contents/the-man-who-stopped-time/

  4. https://www.nobelprize.org/uploads/2023/10/advanced-physicsprize2023-2.pdf

  5. Donna Strickland and Gerard Mourou, Compression of amplified chirped optical pulses, Opt.Commun., Vol.55, No.6, pp.447–449, 1985.

    Article  ADS  CAS  Google Scholar 

  6. Debabrata Goswami. Nobel prize in physics-2018, Resonance, Vol.23, No.12, pp.1333–1341, 2018.

    Article  Google Scholar 

  7. Erhard W Gaul, Mikael Martinez, Joel Blakeney, Axel Jochmann, Martin Ringuette, Doug Hammond, Ted Borger, Ramiro Escamilla, Skylar Douglas, Watson Henderson, et al. Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier, Appl. Optics, Vol.49, No.9, pp.1676–1681, 2010.

    Article  ADS  CAS  Google Scholar 

  8. Bertram Schwarzschild. Nobel prize goes to zewail for developing femtochemistry, Phys. Today, Vol.52, No.12, pp.19–21,1999.

    Article  ADS  Google Scholar 

  9. M Ferray, Anne L’Huillier, XF Li, LA Lompre, G Mainfray, and C Manus, Multiple-harmonic conversion of 1064 nm radiation in rare gases, J. Phys. B: At. Mol. Opt. Phys., Vol.21, No.3, p.L31, 1988.

    Article  ADS  CAS  Google Scholar 

  10. J Wildenauer, Generation of the ninth, eleventh, and fifteenth harmonics of iodine laser radiation, J. Appl. Phys., Vol.62, No.1, pp.41–48, 1987.

    Article  ADS  CAS  Google Scholar 

  11. A McPherson, G Gibson, H Jara, U Johann, Ting S Luk, IA Mcintyre, Keith Boyer, and Charles K Rhodes, Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases, JOSA B, Vol.4, No.4, pp.595–601, 1987.

    Article  ADS  CAS  Google Scholar 

  12. PA Franken, Alan E Hill, CW el Peters, and Gabriel Weinreich, Generation of optical harmonics, Phys. Rev. Lett., Vol.7, No.4, p.118, 1961.

    Article  ADS  Google Scholar 

  13. GHC New and JF Ward, Optical third-harmonic generation in gases, Phys. Rev. Lett., Vol.19, No.10, p.556, 1967.

    Article  ADS  CAS  Google Scholar 

  14. John C Miller and RN Compton, Third-harmonic generation and multiphoton ionization in rare gases, Phys. Rev. A, Vol.25, No.4, p.2056, 1982.

    Article  ADS  CAS  Google Scholar 

  15. RL Carman, CK Rhodes, and RF Benjamin, Observation of harmonics in the visible and ultraviolet created in c o 2-laser-produced plasmas, Phys. Rev. A, Vol.24, No.5, p.2649, 1981.

    Article  ADS  CAS  Google Scholar 

  16. NH Burnett, HA Baldis, MC Richardson, and GD Enright, Harmonic generation in co2 laser target interaction, Appl. Phys. Lett., Vol.31, No.3, pp.172–174, 1977.

    Article  ADS  CAS  Google Scholar 

  17. Anne L’Huillier, XF Li and LA Lompré, Propagation effects in high-order harmonic generation in rare gases, JOSA B, Vol.7, No.4, pp.527–536, 1990.

    Article  ADS  Google Scholar 

  18. C-G Wahlström, Jörgen Larsson, Anders Persson, T Starczewski, Sune Svanberg, P Salieres, Ph Balcou and Anne L’Huillier, High-order harmonic generation in rare gases with an intense short-pulse laser, Phys. Rev. A, Vol.48, No.6, p.4709, 1993.

    Article  ADS  PubMed  Google Scholar 

  19. XF Li, A l’Huillier, M Ferray, LA Lompré and G Mainfray, Multiple-harmonic generation in rare gases at high laser intensity, Phys. Rev. A, Vol.39, No.11, p.5751, 1989.

    Article  ADS  CAS  Google Scholar 

  20. J_J Macklin, JD Kmetec, and CL GordonIII, High-order harmonic generation using intense femtosecond pulses, Phys. Rev., Lett Vol.70, No.6, p.766, 1993.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Anne L’Huillier and Ph Balcou, High-order harmonic generation in rare gases with a 1-ps 1053-nm laser, Phys. Rev. Lett., Vol.70, No.6, 774, 1993.

    Article  ADS  PubMed  Google Scholar 

  22. Kenzo Miyazaki and Hirofumi Sakai, High-order harmonic generation in rare gases with intense subpicosecond dye laser pulses, J. Phys.B: At. Mol Opt. Phys., Vol.25, No.3 p.L83, 1992.

    Article  ADS  CAS  Google Scholar 

  23. Paul B Corkum, Plasma perspective on strong field multiphoton ionization, Phys. R. Lett., Vol.71, No.13 1994, 1993.

    Article  ADS  CAS  Google Scholar 

  24. Maciej Lewenstein, Ph Balcou, M Yu Ivanov, Anne L’huillier, and Paul B Corkum, Theory of high-harmonic generation by low-frequency laser fields, Phys. Rev. A, Vol.49, No., p.2117, 1994.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Jeffrey L Krause, Kenneth J Schafer and Kenneth C Kulander, High-order harmonic generation from atoms and ions in the high intensity regime, Phys. Rev. Lett., Vol.68, No.24, p.3535, 1992.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Pierre-Marie Paul, Elena S Torna, Pierre Breger, Genevive Mullot, Frédérik Augé, Ph Bakou, Harm Geert Muller and Pierre Agostini, Observation of a train of attosecond pulses from high harmonie generation, Science, Vol.292, No.5522, pp.1689–1692, 2001.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. M Hentschel, R Kienberger, Ch Spielmann, Georg A Reider, N Milosevic, Thomas Brabec, Paul Corkum, Ulrich Heinzmann, Markus Drescher and Ferenc Krausz, Attosecond metrology, Nature, Vol.414, No.6863, pp.509–513, 2001.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Zenghu Chang, Controlling attosecond pulse generation with a double optical gating, Phys. Rev. A, Vol.76, No.5, p.051403, 2007.

    Article  ADS  Google Scholar 

  29. JM S chins, P Breger, P Agostini, RC Constantinescu, HG Muller, G Grillon, A Antonetti and A Mysyrowicz, Observation of laser-assisted auger decay in argon, Phys. Rev. Lett., Vol.73, No.16, p.2180, 1994.

    Article  ADS  Google Scholar 

  30. M Spanner, JB Bertrand and DM Villeneuve, In situ attosecond pulse characterization techniques to measure the electromagnetic phase, Phys. Rev. A, Vol.94, No.2, p.023825, 2016.

    Article  ADS  Google Scholar 

  31. N Dudovich, Olga Smirnova, J Levesque, Yu Mairesse, M Yu Ivanov, DM Villeneuve and Paul B Corkum, Measuring and controlling the birth of attosecond xuv pulses, Nat.Phys., Vol.2, No.11, pp.781–786, 2006.

    Article  CAS  Google Scholar 

  32. I Orfanos, I Makos, I Liontos, E Skantzakis, Benjamin Förg, D Charalambidis and P Tzallas, Attosecond pulse metrology, Apt Photonics, Vol.4, No.8, p.080901, 2019.

    Article  ADS  Google Scholar 

  33. Efim Arkad’evich Khazanov, Post-compression of femtosecond laser pulses using self-phase modulation: from kilowatts to petawatts in 40 years, Quantum Electron., Vol.52, No.3, p.208, 2022.

    Article  ADS  Google Scholar 

  34. David J Jones, Scott A Diddams, Jinendra K Ranka, Andrew Stentz, Robert S Windeler, John L Hall and Steven T Cundiff, Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, Vol.288, No.5466, pp.635–639, 2000.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Zenghu Chang, Fundamentals of attosecond optics, CRC press, 2016.

  36. Ph Balcou and Anne L’Huillier, Phase-matching effects in strong-field harmonic generation, Phys. Rev. A, Vol.47, No.2, p.1447, 1993.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. AD Shiner, C Trallero-Herrero, N Kajumba, H-C Bandulet, D Comtois, François Légaré, M Giguère, JC Kieffer, PB Corkum and DM Villeneuve, Wavelength scaling of high harmonic generation efficiency, Phys. Rev. Lett., Vol.103, No.7, p.073902, 2009.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Ankur Mandal, Mehra S Sidhu, Jan M Rost, Thomas Pfeifer and Kamal P Singh, Attosecond delay lines: Design, characterization and applications, The Eur. Phys. J. Spec. Top., pp.1–19, 2021.

  39. Markus Drescher, Michael Hentschel, R Kienberger, Matthias Uiberacker, Vladislav Yakovlev, Armin Scrinzi, Th Westerwalbesloh, TJ Kleineberg, Ulrich Heinzmann, and Ferenc Krausz, Time-resolved atomic inner-shell spectroscopy, Nature, Vol.419, No.6909, pp.803–807, 2002.

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Hiroki Mashiko, Katsuya Oguri, Tomohiko Yamaguchi, Akira Suda and Hideki Gotoh, Petahertz optical drive with wide-bandgap semiconductor, Nat. Phys., Vol.12, No.8, pp.741–745, 2016.

    Article  CAS  Google Scholar 

  41. Krupa Ramasesha, Stephen R Leone and Daniel M Neumark, Real-time probing of electron dynamics using attosecond time-resolved spectroscopy, Annu. Rev. Phys. Chem., Vol.67, pp.41–63, 2016.

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Johannes Schötz, Zilong Wang, E Pisanty, M Lewenstein, Matthias F Kling and MF Ciappina, Perspective on petahertz electronics and attosecond nanoscopy, ACS Photonics, Vol.6, No.12, pp.3057–3069, 2019.

    Article  Google Scholar 

  43. Cornelia Hofmann, Alexandra S Landsman and Ursula Keller, Attoclock revisited on electron tunnelling time, J. Mod. Opt., Vol.66, No.10, pp.1052–1070, 2019.

    Article  ADS  CAS  Google Scholar 

  44. P Eckle, AN Pfeiffer, C Cirelli, A Staudte, R Dorner, HG Muller, M Buttiker and U Keller, Attosecond ionization and tunneling delay time measurements in helium, Science, Vol.322, 5907, 1525–1529, 2008.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. AA Zadernovsky, Excitation of nuclei by photon beams carrying orbital angular momentum, Laser Phys., Vol.16, No.4, pp.571–575, 2006.

    Article  ADS  CAS  Google Scholar 

  46. Thomas Gaumnitz, Arohi Jain, Yoann Pertot, Martin Huppert, Inga Jordan, Fernando Ardana-Lamas and Hans Jakob Wörner, Streaking of 43-attosecond soft-x-ray pulses generated by a passively cep-stable mid-infrared driver, Opt.Express, Vol.25, No.22, pp.27506–27518, 2017.

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Shambhu Ghimire, Anthony D DiChiara, Emily Sistrunk, Pierre Agostini, Louis F DiMauro and David A Reis, Observation of high-order harmonic generation in a bulk crystal, Nat. Pys., Vol.7, No.2, pp.138–141, 2011.

    Article  ADS  CAS  Google Scholar 

  48. Jongkyoon Park, Amutha Subramani, Seungchul Kim and Marcelo F Ciappina, Recent trends in high-order harmonic generation in solids, Adv. Phys. X, Vol.7, No.1, p.2003244, 2022.

    Google Scholar 

  49. Jie Li, Jian Lu, Andrew Chew, Seunghwoi Han, Jialin Li, Yi Wu, He Wang, Shambhu Ghimire and Zenghu Chang, Attosecond science based on high harmonic generation from gases and solids, Nat. Commun., Vol.11, No.1, pp.1–13, 2020.

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge DST, Max-Planck Society, for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akansha Tyagi, Ankur Mandal or Kamal P. Singh.

Additional information

Akansha Tyagi has completed her Ph.D. in physics from IISER Mohali. Her research interests include generation, characterization, and applications of attosecond pulses in probing electron dynamics in matter.

Ankur Mandal is an Assistant Professor at Amity University, Punjab. His research interests are in the investigation of ultrafast dynamics of finite quantum systems.

Kamal P. Singh is a Professor of physics at IISER Mohali. He obtained his Ph.D. in 2005 and did a couple of postdocs at Max-Planck Institute and Kansas State University, USA. His research interests include, among others, ultrafast quantum dynamics and attosecond physics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, A., Mandal, A. & Singh, K.P. Attosecond Physics in a Nutshell. Reson 29, 227–245 (2024). https://doi.org/10.1007/s12045-024-0227-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12045-024-0227-x

Keywords

Navigation