Skip to main content
Log in

Quantum information processing by NMR

  • General/Article
  • Published:
Resonance Aims and scope Submit manuscript

Abstract

Nuclear magnetic resonance (NMR) is a convenient testbed for studying basics of quantum information. Here we provide a brief overview of the concepts and methods used in NMR quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Suggested Reading

  1. G E Moore, IEEE Solid-State Circuits Newsletter, Vol.3, 33, 2006.

    Article  Google Scholar 

  2. R R Schaller, Spectrum, IEEE, Vol.34, 52, 1997.

    Article  Google Scholar 

  3. R P Feynman, International Journal of Theoretical Physics., Vol.21, p.467, 1982.

    Article  Google Scholar 

  4. L K Grover, in Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp.212–219, ACM, 1996.

    Google Scholar 

  5. P W Shor, SIAM Journal on Computing, Vol..26, p.1484, 1997.

    Article  Google Scholar 

  6. A K Ekert, Physical Review Letters, Vol.67, p.661, 1991.

    Article  Google Scholar 

  7. C B Bennett, Physical Review Letters, Vol.68, p.3121, 1992.

    Article  Google Scholar 

  8. Nielsen and I L Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2010.

    Book  Google Scholar 

  9. D G Cory, A F Fahmy and T F Havel, Proc. Natl. Acad. Sci., USA 94, 1634, 1997.

    Article  Google Scholar 

  10. M G K I L Chuang, N Gershenfeld and D W Leung, Proc. R. Soc. Lond., Vol.A454, p.447, 1998.

    Article  Google Scholar 

  11. K Dorai, Arvind and A Kumar, Physical Review, Vol.A61, p.042306, 2000.

    Article  Google Scholar 

  12. B E Kane, Nature, Vol.393, p.133, 1998.

    Article  Google Scholar 

  13. J Wrachtrup, S Y Kilin and A Nizovtsev, Optics and Spectroscopy, Vol.91, p.429, 2001.

    Article  Google Scholar 

  14. J Preskill, California Institute of Technology, 1998.

  15. D P DiVicenzo et al, arXiv preprint quant-ph/0002077, 2000.

  16. H O Everitt, Experimental Aspects of Quantum Computing, Springer, 2005.

    Book  Google Scholar 

  17. J Baugh, O Moussa C A Ryan, R Laamme, C Ramanathan, T F Havel and D G Cory, Physical Review, Vol.A73, p.022305, 2006.

    Article  Google Scholar 

  18. T S Mahesh and D Suter, Physical Review, Vol.A74, p.062312, 2006.

    Article  Google Scholar 

  19. N Siaha, T S Mahesh, K V Ramanathan and A Kumar, Journal of Chemical Physics, Vol.144, p.4415, 2001.

    Google Scholar 

  20. K Murali, N Sinha, T S Mahesh, M H Levitt, K V Ramanathan and A Kumar, Physical Review, Vol.A66, p.022313, 1, 2002.

    Article  Google Scholar 

  21. A Abragam, The Principles of Nuclear Magnetism, Vol.32, Oxford University Press, 1961.

    Google Scholar 

  22. J Luo and X Zeng, arXiv preprint quant-ph/9811044, 1991.

  23. M S Anwar, D Blazina, H A Carteret, S B Dockett, T Halstead, J A Jones, C Kozak and R Taylor, Physical Review Letters, Vol.93, p.040501, 2004.

    Article  Google Scholar 

  24. C Negrevergne, T S Mahesh, C Ryan, M Ditty, F Cyr-Racine, W Power, N Boulant, T Havel, D Cory and R Laamme, Physical Review Letters, Vol.96, p.170501, 2006.

    Article  Google Scholar 

  25. T S Mahesh, K Dorai, A Kumar et al, Journal of Magnetic Resonance, Vol.148, p.95, 2001.

    Article  Google Scholar 

  26. E M Fortunato, M A Pravia, N Boulant, G Teklemariam, T F Havel and D G Cory, The Journal of Chemical Physics., Vol.116, p.7599, 2002.

    Article  Google Scholar 

  27. N Khaneja, T Reiss, C Kehlet, T Schulte-Herbruggen and S J Glaser, Journal of Magnetic Resonance., Vol.172, p.296, 2005.

    Article  Google Scholar 

  28. I I Maximov, Z Tošner and N C Nielsen, The Journal of Chemical Physics, Vol.128, p.184505, 2008.

    Article  Google Scholar 

  29. K Rama Koteswara Rao, Hemant Katiyar, T S Mahesh, Aditi Sen (De), Ujjwal Sen and Anil Kumar, Multipartite quantum correlations reveal frustration in a quantum Ising spin system, Physical Review, Vol.A88, p.022312, 2013.

    Google Scholar 

  30. D G Cory, M Price, W Maas, E Knill, R Laamme, W H Zurek, T F Havel and S Somaroo, Physical Review Letters, Vol.81, p.2152, 1998.

    Article  Google Scholar 

  31. L Viola, E Knill and S Lloyd, Physical Review Letters, Vol.82, p.2417, 1999.

    Article  Google Scholar 

  32. S Melboom and D Gill, Review of Scientific Instruments, Vol.29, 688 1958.

    Article  Google Scholar 

  33. G S Uhrig, Physical Review Letters, Vol.98, p.100504, 2007.

    Article  Google Scholar 

  34. Soumya Singha Roy, T S Mahesh and G S Agarwal, Storing entanglement of nuclear spins via Uhrig dynamical decoupling, Phys. Rev., Vol.A83, p.062326, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Mahesh.

Additional information

T S Mahesh is an Associate Professor with the Department of Physics at Indian Institute of Science Education and Research, Pune. His areas of research are NMR spectroscopy and applications of NMR to quantum information processing and quantum computing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, T.S. Quantum information processing by NMR. Reson 20, 1053–1065 (2015). https://doi.org/10.1007/s12045-015-0273-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12045-015-0273-5

Keywords

Navigation