Skip to main content
Log in

A higher order Levin–Faĭnleĭb theorem

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

When restricted to some non-negative multiplicative function, say f, bounded on primes and that vanishes on non square-free integers, our result provides us with an asymptotic for \(\sum _{n\le X}f(n)/n\) with error term \({\mathcal {O}}((\log X)^{\kappa -h-1+\varepsilon })\) (for any positive \(\varepsilon >0\)) as soon as we have \(\sum _{p\le Q}f(p)(\log p)/p=\kappa \log Q+\eta +{\mathcal {O}}(1/(\log 2Q)^h)\) for a non-negative \(\kappa \) and some non-negative integer h. The method generalizes the 1967-approach of Levin and Faĭnleĭb and uses a differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bombieri E, The asymptotic sieve, Rend. Accad. Naz. XL V. Ser. 1–2 (1976) 243–269

    MATH  Google Scholar 

  2. de la Bretèche R and Tenenbaum G, Remarks on the Selberg–Delange method, Acta Arith. 200(4) (2021) 349–369

    Article  MathSciNet  MATH  Google Scholar 

  3. Friedlander J and Iwaniec H, On Bombieri’s asymptotic sieve, Ann. Sc. Norm. Sup. (Pisa) 5 (1978) 719–756

    MathSciNet  MATH  Google Scholar 

  4. Friedlander J and Iwaniec H, Bombieri’s sieve, in: Analytic number theory, edited by Bruce C Berndt et al., Vol. 1, Proceedings of a Conference in Honor of Heini Halberstam, May 16–20, 1995, Urbana, IL, USA, Boston, MA, volume 138 of Birkhäuser. Prog. Math. (1996) pp. 411–430

  5. Granville A and Koukoulopoulos D, Beyond the LSD method for the partial sums of multiplicative functions, Ramanujan J. 49(2) (2019) 287–319

    Article  MathSciNet  MATH  Google Scholar 

  6. Iwaniec H and Kowalski E, Analytic Number Theory, American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI (2004) xii+615 pp

  7. Kienast A, Über die Äquivalenz zweier Ergebnisse der analytischen Zahlentheorie. Math. Ann. 95 (1926) 427–445 10.1007/BF01206619.

    Article  MathSciNet  MATH  Google Scholar 

  8. Landau E, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate. Arch. der Math. u. Phys. (3) 13 (1908) 305–312

    MATH  Google Scholar 

  9. Levin B V and Faĭnleĭb A S, Application of certain integral equations to questions of the theory of numbers, Uspehi Mat. Nauk. 22(3(135)) (1967) 119–197

    MathSciNet  MATH  Google Scholar 

  10. Moree P and te Riele Herman J J, The hexagonal versus the square lattice, Math. Comp. 73(245) (2004) 451–473

    Article  MathSciNet  MATH  Google Scholar 

  11. Popa D and Pugna G, Hyers–Ulam stability of Euler’s differential equation, Results Math. 69(3–4) (2016) 317–325

    Article  MathSciNet  MATH  Google Scholar 

  12. Popa D and Raşa I, On the Hyers–Ulam stability of the linear differential equation, J. Math. Anal. Appl. 381(2) (2011) 530–537

    Article  MathSciNet  MATH  Google Scholar 

  13. Ramaré O, Arithmetical Aspects of the Large Sieve Inequality, volume 1 of Harish-Chandra Research Institute Lecture Notes (2009) (New Delhi: Hindustan Book Agency) with the collaboration of D. S. Ramana

  14. Ramaré O, From explicit estimates for the primes to explicit estimates for the Moebius function, Acta Arith. 157(4) (2013) 365–379

    Article  MathSciNet  MATH  Google Scholar 

  15. Ram Murty M and Saradha N, An asymptotic formula by a method of Selberg, C. R. Math. Rep. Acad. Sci. Canada 15(6) (1993) 273–277

    MathSciNet  MATH  Google Scholar 

  16. Selberg A, Collected Papers, Vol. II (1991) (Berlin: Springer-Verlag) with a Foreword by K. Chandrasekharan

  17. Selberg A, An elementary proof of the prime-number theorem, Ann. Math. 50(2) (1949) 305–313

    Article  MathSciNet  MATH  Google Scholar 

  18. Serre J-P, Divisibilité de certaines fonctions arithmétiques, Enseignement Math. (2) 22(3–4) (1976) 227–260

  19. Wirsing E, Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math. Ann. 143 (1961) 75–102

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper started in 2018 when the first and third authors were invited by the Indian Statistical Institute, Delhi under Cefipra program 5401-A. It was continued when these authors were visiting Stockholm in early 2019 and then in July of the same year when the first and second authors were invited by the Max Planck Institute in Bonn. It was finalized in 2021 when the first author was invited by the Haussdorf Institut für Mathematik in Bonn and the second author was invited by the Max Planck Institute in Bonn. The authors would like to thank all these institutions for providing suitable conditions without which this piece of work would surely have died in their drawers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisa Sedunova.

Additional information

Communicating Editor: Sanoli Gun

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaré, O., Sedunova, A. & Sharma, R. A higher order Levin–Faĭnleĭb theorem. Proc Math Sci 133, 1 (2023). https://doi.org/10.1007/s12044-022-00721-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-022-00721-3

Keywords

2010 Mathematics Subject Classification

Navigation