Skip to main content
Log in

Phase-mixing of high-frequency electrostatic oscillations in multi-component dusty plasmas

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A theoretical investigation of the phase-mixing phenomenon of Langmuir oscillations (LOs) in a multi-component dusty plasma is presented. The plasma under study is a four-component plasma consisting of electrons, positrons, singly ionised positive ions and positive (or negative) polarity dust grains. The massive dust grains are assumed to form a fixed charge neutralising background, while the electrons, positrons and ions are considered to take part in the wave dynamics. A simple perturbative analysis of the governing fluid-Maxwell’s equations leads us to an approximate relation for phase-mixing time of LOs, improving some earlier existing results. It is revealed that even though the dust grains remain motionless in the background, they still have significant impact on the phase-mixing process of LOs in such plasmas. It is found that the nature of the charge on the dust grains and the equilibrium dust density profoundly affect the phase-mixing time. The results of this investigation is expected to have relevance in space-plasma environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J M Dawson, Phys. Rev. 113, 383 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  2. R C Davidson and P P Schram, Nucl. Fusion 8, 183 (1968)

    Article  Google Scholar 

  3. R C Davidson, Methods in nonlinear plasma theory (Academic, New York, 1972)

    Google Scholar 

  4. A Hasegawa and L Chen, Phys. Rev. Lett. 32, 454 (1974)

    Article  ADS  Google Scholar 

  5. P Koch and J Albritton, Phys. Rev. Lett. 32, 1420 (1974)

    Article  ADS  Google Scholar 

  6. J Albritton and P Koch, Phys. Fluids 18, 1136 (1975)

    Article  ADS  Google Scholar 

  7. C Joshi, W B Mori, T Katsouleas, J Dawson, J M Kindel and D W Forslund, Nature 311, 525 (1984)

    Article  ADS  Google Scholar 

  8. A Modena, Z Najmudin, A E Dangor, C E Clayton, K A Marsh, C Joshi, V Malka, C B Darrow, C Danson, D Neely and F N Walsh, Nature 377, 606 (1995)

    Article  ADS  Google Scholar 

  9. C Nappi, A Forlani and R Fedele, Phys. Scr. 43, 301 (1991)

    Article  ADS  Google Scholar 

  10. S Sengupta and P K Kaw, Phys. Rev. Lett. 82, 1867 (1999)

    Article  ADS  Google Scholar 

  11. L M Gorbunov, P Mora and R R Ramazashvili, Phys. Rev. E 65, 036401 (2002)

    Article  ADS  Google Scholar 

  12. P K Kaw, A T Lin and J M Dawson, Phys. Fluids 16, 1967 (1973)

    Article  ADS  Google Scholar 

  13. E Infeld, G Rowlands and S Torvén, Phys. Rev. Lett. 62, 2269 (1989)

    Article  ADS  Google Scholar 

  14. J F Drake, Y C Lee, K Nishikawa and N L Tsintsadze, Phys. Rev. Lett. 36, 196 (1976)

    Article  ADS  Google Scholar 

  15. E Infeld and G Rowlands, Phys. Rev. Lett. 62, 1122 (1989)

    Article  ADS  Google Scholar 

  16. C Maity, N Chakrabarti and S Sengupta, Phys. Rev. E 86, 016408 (2012)

    Article  ADS  Google Scholar 

  17. P S Verma, S Sengupta and P K Kaw, Phys. Rev. Lett. 108, 125005 (2012)

    Article  ADS  Google Scholar 

  18. S Pramanik, C Maity and M Karmakar, Phys. Plasmas 26, 082111 (2019)

    Article  ADS  Google Scholar 

  19. R M G M Trines, Phys. Rev. E 79, 056406 (2009)

    Article  ADS  Google Scholar 

  20. P S Verma, Phys. Plasmas 18, 122111 (2011)

    Article  ADS  Google Scholar 

  21. C Maity, A Sarkar, P K Shukla and N Chakrabarti, Phys. Rev. Lett. 110, 215002 (2013)

    Article  ADS  Google Scholar 

  22. S Pramanik, C Maity and N Chakrabarti, Phys. Plasmas 22, 052303 (2015)

    Article  ADS  Google Scholar 

  23. M Karmakar, C Maity and N Chakrabarti, Phys. Scr. 93, 065601 (2018)

    Article  ADS  Google Scholar 

  24. S Pramanik and C Maity, Phys. Scr. 96, 035603 (2021)

    Article  ADS  Google Scholar 

  25. C Maity, Phys. Plasmas 21, 072317 (2014)

    Article  ADS  Google Scholar 

  26. M Karmakar, C Maity, N Chakrabarti and S Sengupta, Eur. Phys. J. D 70, 144 (2016)

    Article  ADS  Google Scholar 

  27. P S Verma, Phys. Plasmas 23, 122125 (2016)

    Article  ADS  Google Scholar 

  28. C Maity and S Pramanik, Phys. Lett. A 384, 126856 (2020)

    Article  MathSciNet  Google Scholar 

  29. I S Elkamash and I Kourakis, Sci. Rep. 11, 6174 (2021)

    Article  ADS  Google Scholar 

  30. A A Mir, S K Tiwari, J Goree, A Sen, C Crabtree and G Ganguli, Phys. Plasmas 27, 113701 (2020)

    Article  ADS  Google Scholar 

  31. A Mir, S Tiwari and A Sen, Phys. Plasmas 29, 032303 (2022)

    Article  ADS  Google Scholar 

  32. A Mir, S Tiwari, A Sen, C Crabtree, G Ganguli and J Goree, Phys. Rev. E 107, 035202 (2023)

    Article  ADS  Google Scholar 

  33. S Pramanik and C Maity, Phys. Lett. A 382, 1020 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. C Maity and M Karmakar, Phys. Scr. 98, 085601 (2023)

    Article  ADS  Google Scholar 

  35. T Tajima and K Shibata, Plasma astrophysics (Addison Wesley, 1997)

    Google Scholar 

  36. J Wang and D E Hastings, Phys. Fluids B: Plasma Phys. 4, 1615 (1992)

    Article  Google Scholar 

  37. A H Nayfeh, Perturbation methods (Wiley-Interscience Publication, New York, 1973)

    Google Scholar 

  38. C M Bender and S A Orszag, Advanced mathematical methods for scientists and engineers (McGraw-Hill Inc., New York, 1978)

    Google Scholar 

  39. G N Watson, A treatise on the theory of Bessel’s functions (Cambridge University, Cambridge, UK, 1922)

    Google Scholar 

  40. L Stenflo and G Brodin, Phys. Plasmas 23, 074501 (2016)

    Article  ADS  Google Scholar 

  41. S Pramanik and C Maity, Phys. Plasmas 24, 084504 (2017)

    Article  ADS  Google Scholar 

  42. S Pramanik and C Maity, Pramana – J. Phys. 97, 86 (2023)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Maity.

Appendix A: Solutions in original physical variables

Appendix A: Solutions in original physical variables

The full first-order solutions of the original variables are as follows:

$$\begin{aligned}{} & {} n_{p}^{(1)}=\frac{1}{2}\delta \cos kx [\sigma n_{0e}-\beta (n_{0i}+n_{0d})]\nonumber \\{} & {} \qquad \quad \ \times (1-\cos {\tilde{\omega }}_{pep}t),\nonumber \\{} & {} n_{e}^{(1)}=n_{0e}\delta \cos kx - \frac{1}{2}\delta \cos kx[\sigma n_{0e}+\beta (n_{0i}+n_{0d})]\nonumber \\{} & {} \qquad \qquad \times (1-\cos {\tilde{\omega }}_{pep}t), \nonumber \\{} & {} n_{i}^{(1)}=n_{0e}\delta \cos kx(1-\sigma ) (1-\cos {\tilde{\omega }}_{pep}t),\nonumber \\{} & {} { v}_{px}^{(1)}=-\frac{\omega _{pe}}{k}\delta \sqrt{\beta } \sin kx \sin {\tilde{\omega }}_{pep}t,\nonumber \\{} & {} { v}_{ex}^{(1)}=\frac{\omega _{pe}}{k}\delta \sqrt{\beta } \sin kx \sin {\tilde{\omega }}_{pep}t,\nonumber \\{} & {} { v}_{ix}^{(1)}=-\frac{\omega _{pi}}{k}\delta \alpha ^{-1}\sqrt{1-\sigma } \sin kx \sin {\tilde{\omega }}_{pep}t. \end{aligned}$$
(A.1)

The second-order solutions of the original variables are

$$\begin{aligned} n_{p}^{(2)}\simeq & {} \frac{1}{4}\Gamma _p \delta ^2 \beta ^2 \cos 2kx({\tilde{\omega }}_{pep}t)^2,\nonumber \\ n_{e}^{(2)}\simeq & {} \frac{1}{4}\Gamma _e \delta ^2 \beta ^2 \cos 2kx({\tilde{\omega }}_{pep}t)^2,\nonumber \\ n_{i}^{(2)}\simeq & {} \frac{1}{4}n_{0i}\delta ^2\beta ^2 \left[ 1-\sigma (1-\Delta ^2)+\frac{\eta _d}{\alpha }(1-\sigma ) \right] \nonumber \\{} & {} \times \cos 2kx({\tilde{\omega }}_{pep}t)^2,\nonumber \\ { v}_{px}^{(2)}\simeq & {} -\frac{1}{4}\delta ^2\beta \frac{\omega _{pe}}{k} \left[ \alpha \beta \left( 1-\Delta ^2+\frac{\eta _d}{\alpha } \right) +1 \right] \nonumber \\{} & {} \times \sin 2kx(\omega _{pe}t), \nonumber \\ { v}_{ex}^{(2)}\simeq & {} \frac{1}{4}\delta ^2\beta \frac{\omega _{pe}}{k} \left[ \alpha \beta \left( 1-\Delta ^2+\frac{\eta _d}{\alpha } \right) -1 \right] \nonumber \\{} & {} \times \sin 2kx(\omega _{pe}t), \nonumber \\ { v}_{ix}^{(2)}\simeq & {} -\frac{1}{4}\delta ^2 \left[ \alpha \beta ^2 \frac{\omega _{pe}\Delta }{k}\left( 1-\Delta ^2+\frac{\eta _d}{\alpha }\right) +\frac{\omega _{pi}\Delta ^2\beta }{k}\right] \nonumber \\{} & {} \times \sin 2kx(\omega _{pe}t), \end{aligned}$$
(A.2)

where

$$\begin{aligned} \Gamma _p= & {} n_{0e}\left[ \left( 1-\frac{\alpha }{2} \right) -\frac{\alpha ^2 \beta }{2}\left( 1-\Delta ^2+\frac{\eta _d}{\alpha }\right) \right. \nonumber \\{} & {} \left. -\frac{\eta _d}{2}\left\{ 1+\alpha \beta \left( 1-\Delta ^2+\frac{\eta _d}{\alpha } \right) \right\} \right] \nonumber \\{} & {} -\frac{1}{2}n_{0i}\left( 1-\sigma (1-\Delta ^2)+ \frac{\eta _d}{\alpha }(1-\sigma ) \right) , \nonumber \\ \Gamma _e= & {} n_{0e}\left[ \left( 1-\frac{\alpha }{2} \right) -\frac{\alpha ^2 \beta }{2}\left( 1-\Delta ^2+\frac{\eta _d}{\alpha }\right) \right. \nonumber \\{} & {} \left. -\frac{\eta _d}{2}\left\{ 1+\alpha \beta \left( 1-\Delta ^2+\frac{\eta _d}{\alpha } \right) \right\} \right] \nonumber \\{} & {} + \frac{1}{2}n_{0i}\left( 1-\sigma (1-\Delta ^2)+ \frac{\eta _d}{\alpha }(1-\sigma ) \right) . \end{aligned}$$
(A.3)

In writing these second-order solutions, we have retained only the leading order secular terms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Maity, C. Phase-mixing of high-frequency electrostatic oscillations in multi-component dusty plasmas. Pramana - J Phys 98, 51 (2024). https://doi.org/10.1007/s12043-024-02750-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02750-1

Keywords

PACS Nos

Navigation