Skip to main content
Log in

Thompson and Troian velocity slip flow of the Casson hybrid nanofluid past a Darcy–Forchheimer porous inclined surface with Ohmic heating, Dufour and Soret effects

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A model of magnetohydrodynamic (MHD) flow of non-Newtonian Casson hybrid nanofluid past a Darcy–Forchheimer porous inclined surface has been considered. Consequences of volumetric thermal and mass expansions along with Thompson and Troian velocity slip constraints on flow profiles have been investigated. Heat and mass transfer have been manipulated over heat absorption, Dufour and Soret effects, Ohmic heating (irreversible process in which electrical energy is transformed into thermal energy) and chemical reactions. Suspensions of single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) in engine oil (EO) have been accounted to enhance thermal performance. Suitable similarity transformation has been incorporated to reduce the proposed model equations into a dimensionless system of ordinary differential equations. Galerkin finite element method has been employed to numerically solve the system. Comparison of velocity, thermal and concentration profiles of mono and hybrid nanofluids has been studied using graphs and tables. It is concluded that the velocity and thermal profiles of hybrid nanofluid dominate over the nanofluid whereas the opposite behaviour is followed by concentration profile. Velocity and temperature decrease with velocity slip parameter and Soret number whereas mass distribution escalates. Opposite behaviour has been observed for Dufour number. Maximum increment in heat transfer has been observed for the Dufour number which is approximately 31%. Analogy between the results obtained in this study and already published work has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. P Thompson and S Troian, Nature 389, 360 (1997), https://doi.org/10.1038/38686

    Article  ADS  Google Scholar 

  2. H Power, J Soavi, P Kantachuvesiri and C Nieto, Z. Angew. Math. Phys. 66, 2703 (2015), https://doi.org/10.1007/s00033-015-0527-9

    Article  Google Scholar 

  3. Z Abbas, M Sheikh, J Hasnain, H Ayaz and A Nadeem, Phys. Scr. 94, 1 (2019), https://doi.org/10.1088/1402-4896/ab27f0

    Article  Google Scholar 

  4. S Nadeem, S Ahmad and M N Khan, J. Therm. Anal. Calorim. 143, 2099 (2021), https://doi.org/10.1007/s10973-020-09747-z

    Article  Google Scholar 

  5. S Li, V Puneeth, A M Saeed, A Singhal, F A M Al-Yarimi, M I Khan and S M Eldin, Sci. Rep. 13, 1 (2023), https://doi.org/10.1038/s41598-023-29485-0

    Article  Google Scholar 

  6. N Casson, Rheol. Disperse Syst.: Conf. Proc. Br. Soc. Rheol. vii, 84 (1959)

  7. J Boyd, J M Buick and S Green, Phys. Fluids 19, 1 (2007), https://doi.org/10.1063/1.2772250

    Article  Google Scholar 

  8. S Mukhopadhyay, P R De, K Bhattacharyya and G C Layek, Ain Shams Eng. J. 4, 933 (2013), https://doi.org/10.1016/j.asej.2013.04.004

    Article  Google Scholar 

  9. A Hussanan, M Z Salleh, H T Alkasasbeh and I Khan, Heat Transf. Res. 49, 1185 (2018), https://doi.org/10.1615/HeatTransRes.2018014771

    Article  Google Scholar 

  10. A Ali, A Fatima, Z Bukhari, H Farooq and Z Abbas, Korea-Aust. Rheol. J. 33, 79 (2021), https://doi.org/10.1007/s13367-021-0007-z

    Article  Google Scholar 

  11. S Nadeem, B Ishtiaq, M B Ben Hamida, S Almutairi, H A Ghazwani, S M Eldin and A S Al-Shafay, Sci. Rep. 13, 1 (2023), https://doi.org/10.1038/s41598-023-28515-1

    Article  Google Scholar 

  12. S U Choi and J A Eastman, Mater. Sci. 231, 99 (1995)

    Google Scholar 

  13. S M S Murshed, K C Leong and C Yang, Int. J. Therm. Sci. 44, 367 (2005), https://doi.org/10.1016/j.ijthermalsci.2004.12.005

    Article  Google Scholar 

  14. D Kim, Y Kwon, Y Cho, C Li, S Cheong, Y Hwang, J Lee, D Hong and S Moon, Curr. Appl. Phys. 9, e119 (2009), https://doi.org/10.1016/j.cap.2008.12.047

    Article  ADS  Google Scholar 

  15. N Acharya and A J Chamkha, Int. Commun. Heat Mass Transf. 132, 1 (2022), https://doi.org/10.1016/j.icheatmasstransfer.2022.105885

    Article  Google Scholar 

  16. A Moghadassi, E Ghomi and F Parvizian, Int. J. Therm. Sci. 92, 50 (2015), https://doi.org/10.1016/j.ijthermalsci.2015.01.025

    Article  Google Scholar 

  17. N S Khashi’ie, N M Arifin, I Pop and N S Wahid, Alex. Eng. J. 59, 1787 (2020), https://doi.org/10.1016/j.aej.2020.04.048

    Article  Google Scholar 

  18. N Acharya, Eur. Phys. J. Plus 136, 1 (2021), https://doi.org/10.1140/epjp/s13360-021-01892-0

    Article  Google Scholar 

  19. S Chaudhary and K K Chouhan, Heat Transfer 51, 6320 (2022), https://doi.org/10.1002/htj.22593

    Article  Google Scholar 

  20. N Acharya, J. Magn. Magn. Mater. 564, 1 (2022), https://doi.org/10.1016/j.jmmm.2022.170167

    Article  Google Scholar 

  21. A Rashid, M Ayaz and S Islam, Adv. Mech. Eng. 15, 1 (2023), https://doi.org/10.1177/16878132231179611

    Article  Google Scholar 

  22. H Rui and H Pan, SIAM J. Numer. Anal. 50, 2612 (2012), https://doi.org/10.1137/110858239

    Article  MathSciNet  Google Scholar 

  23. T Muhammad, D C Lu, B Mahanthesh, M R Eid, M Ramzan and A Dar, Commun. Theor. Phys. 70, 361 (2018), https://doi.org/10.1088/0253-6102/70/3/361

    Article  ADS  Google Scholar 

  24. M R Eid, Arab. J. Sci. Eng. 45, 9803 (2020), https://doi.org/10.1007/s13369-020-04943-3

    Article  Google Scholar 

  25. K Loganathan, N Alessa, K Tamilvanan and F S Alshammari, Eur. Phys. J. Spec. Top. 230, 1293 (2021), https://doi.org/10.1140/epjs/s11734-021-00056-6

    Article  Google Scholar 

  26. S A Khan, T Hayat, A Alsaedi and M S Alhodaly, J. Comput. Des. Eng. 9, 1756 (2022), https://doi.org/10.1093/jcde/qwac080

    Article  Google Scholar 

  27. S Chaudhary and K K Chouhan, Numer. Heat Tr. A-Appl. 87, 732 (2023), https://doi.org/10.1080/10407782.2022.2154725

    Article  ADS  Google Scholar 

  28. M S Alam, M M Rahman and M A Sattar, Commun. Nonlinear Sci. Numer. Simul. 14, 2132 (2009), https://doi.org/10.1016/j.cnsns.2008.06.008

    Article  ADS  Google Scholar 

  29. P S Reddy and P Sreedevi, Multidiscip. Model. Mater. Struct. 17, 317 (2021), https://doi.org/10.1108/MMMS-03-2020-0044

    Article  Google Scholar 

  30. E I Mogilevskii, Fluid Dyn. 56, 786 (2021), https://doi.org/10.1134/S0015462821060112

    Article  MathSciNet  ADS  Google Scholar 

  31. S G Bejawada, Y D Reddy, W Jamshed, K S Nisar, A N Alharbi and R Chouikh, Alex. Eng. J. 61, 8207 (2022), https://doi.org/10.1016/j.aej.2022.01.043

    Article  Google Scholar 

  32. M Shuaib, M Anas, H U Rehman, A Khan, L Khan and S M Eldin, Sci. Rep. 13, 1 (2023), https://doi.org/10.1038/s41598-023-33259-z

    Article  Google Scholar 

  33. C Chen, Int. J. Eng. Sci. 42, 699 (2004), https://doi.org/10.1016/j.ijengsci.2003.09.002

    Article  Google Scholar 

  34. S Das, R N Rana and O D Makinde, Alex. Eng. J. 54, 251 (2015), https://doi.org/10.1016/j.aej.2015.03.003

    Article  Google Scholar 

  35. M Imtiaz, A Kiran, T Hayat and A Alsaedi, Phys. Scr. 94, 1 (2019), https://doi.org/10.1088/1402-4896/ab0607

    Article  Google Scholar 

  36. S Chaudhary, K M Kanika and S Chaudhary, Indian J. Eng. Mater. Sci. 27, 33 (2020), https://doi.org/10.56042/ijems.v27i1.26556

    Article  Google Scholar 

  37. K Ramesha, A Riaz and Z A Dar, Propuls. Power Res. 10, 118 (2021), https://doi.org/10.1016/j.jppr.2021.05.002

    Article  Google Scholar 

  38. S Jayanthi and H Niranjan, Symmetry 15, 1 (2023), https://doi.org/10.3390/sym15020314

    Article  Google Scholar 

  39. A Postelnicu, Int. J. Heat Mass Transf. 47, 1467 (2004), https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.017

    Article  Google Scholar 

  40. T Hayat, M Mustafa and I Pop, Commun. Nonlinear Sci. Numer. Simul. 15, 1183 (2010), https://doi.org/10.1016/j.cnsns.2009.05.062

    Article  MathSciNet  ADS  Google Scholar 

  41. D Srinivasacharya, B Mallikarjuna and R Bhuvanavijaya, Ain Shams Eng. J. 6, 553 (2015), https://doi.org/10.1016/j.asej.2014.11.007

    Article  Google Scholar 

  42. J A Gbadeyana, T L Oyekunlec, P F Fasogbonband and J U Abubakar, J. Taibah Univ. Sci. 12, 631 (2018), https://doi.org/10.1080/16583655.2018.1492221

  43. S A Shehzad, Z Abbas, A Rauf and Z Abdelmalek, Int. Commun. Heat Mass Transf. 120, 1 (2021), https://doi.org/10.1016/j.icheatmasstransfer.2020.105025

    Article  Google Scholar 

  44. M B Patil, K C Shobha, S Bhattacharyya and Z Said, J. Therm. Anal. Calorim. 148, 2857 (2023), https://doi.org/10.1007/s10973-023-11962-3

    Article  Google Scholar 

  45. M Haneef, H A Madkhali, A Salmi, S O Alharbi and M Y Malik, Int. Commun. Heat Mass Transf. 135, 1 (2022), https://doi.org/10.1016/j.icheatmasstransfer.2022.106061

    Article  Google Scholar 

  46. A Zeeshan, N Shehzad, M Atif, R Ellahi and S M Sait, Symmetry 14, 1 (2022), https://doi.org/10.3390/sym14020406

    Article  Google Scholar 

  47. R Cortell, Appl. Math. Comput. 184, 864 (2007), https://doi.org/10.1016/j.amc.2006.06.077

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial funding to this work by the University Grants Commission (UGC), New Delhi under NTA Ref. No. 211610058438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Chaudhary.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, S., Deshwal, J. Thompson and Troian velocity slip flow of the Casson hybrid nanofluid past a Darcy–Forchheimer porous inclined surface with Ohmic heating, Dufour and Soret effects. Pramana - J Phys 98, 55 (2024). https://doi.org/10.1007/s12043-024-02738-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02738-x

Keywords

PACS Nos

Navigation