Skip to main content
Log in

New exact solution forms and stability aspects to Drinfel’d–Sokolov–Wilson model by using extended Jacobi elliptic rational function approach

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this study, the travelling wave solutions of the general Drinfel’d–Sokolov–Wilson (DSW)-system, introduced as a model of water waves, are obtained and wave dynamics are investigated. Jacobi elliptic functions are valuable mathematical tools that can be used to various aspects of physics engineering. The method used is effective in generating periodic solutions. It has been observed that the periodic solutions obtained by using Jacobi elliptic function expansions containing different Jacobi elliptic functions may be different, and some new periodic solutions can be obtained. To examine the behaviour of the solutions obtained for appropriate values of the parameters, three-dimensional simulations were conducted using Maple\(^\textrm{TM}\). Additionally, 2D simulations are presented to physicists for easy observation of wave motion. The usage of these simulations aids in better understanding and predicting the behaviour of waves, tidal forces and other phenomena, ultimately contributing to the development of safer and more efficient structures and systems. The stability property of the obtained solutions was tested to demonstrate their reliability. The novelty of this study is that the rich solution group obtained with Jacobi elliptic functions is different from the solutions in the literature and thus provides new physical interpretations. The findings are expected to contribute to the development of new analytical and numerical tools for solving other nonlinear systems in the future, containing a large number of travelling wave solutions crucial for explaining certain scientific phenomena in fluid media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A M Wazwaz, Partial differential equations and solitary waves theory, in: Nonlinear physical science (Springer, 2009)

  2. R Selvaraj, S Venkatraman, D D Ashok and K Krishnaraja, PramanaJ. Phys. 94, 137 (2020)

    Article  ADS  Google Scholar 

  3. Y Yııldıırıım, N Çelik and E Yaşar, Results Phys. 7, 3116 (2017)

    Article  ADS  Google Scholar 

  4. S Kumar and S Rani, PramanaJ. Phys. 94, 137 (2021)

    Google Scholar 

  5. E Yaşar and B Koçasız, Int. J. Mod. Phys. B 2024, 1 (2024)

    Google Scholar 

  6. N Çelik, A R Seadawy, Y Sağlam and E Yaşar, Chaos Solitons Fractals 143, 110486 (2021), https://doi.org/10.1016/j.chaos.2020.110486

    Article  Google Scholar 

  7. N Çelik, BEU J. Sci. 10(2), 375 (2021)

    Google Scholar 

  8. S Behera and N H Aljahdaly Pramana – J. Phys. 97, 130 (2023), https://doi.org/10.1007/s12043-023-02602-4

  9. S K Mohanty, O V Kravchenko, M KrDeka, N A Dev and D V Churikov, J. King Saud Univ.-Sci. 35, 102358 (2023)

    Article  Google Scholar 

  10. J H He and X H Wu, Chaos Solitons Fractals 30(3), 700 (2006), https://doi.org/10.1016/j.chaos.2006.03.020 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  11. T A Sulaiman, A Yusuf, E Hincal, D Baleanu and M Bayram, J. Ocean Eng. Sci. 7, 467 (2022), https://doi.org/10.1016/j.joes.2021.09.012

    Article  Google Scholar 

  12. M Zeynel and E Yaşar, J. Ocean Eng. Sci.,https://doi.org/10.1016/j.joes.2022.04.017 (2022)

  13. A Jhangeer, A R Seadawy, F Ali and A Abbirah, Results Phys. 16, 102816 (2020), https://doi.org/10.1016/j.rinp.2019.102816

  14. U H Rehman, N Ullah and M A Imran, Int. J. Light Electron Optics-Optik 226, 165378 (2021), https://doi.org/10.1016/j.ijleo.2020.165378

    Article  Google Scholar 

  15. S Arshed, N Raza, A R Butt, A Javid and J F Gomez-Aguilar, J. Ocean Eng. Sci 8, 33 (2023), https://doi.org/10.1016/j.joes.2021.11.001

    Article  Google Scholar 

  16. A Kumar and S Kumar, Int. J. Math. Comput. Eng. 1(2), 217 (2023), https://intapi.sciendo.com/pdf/10.2478/ijmce-2023-0018

  17. R Kumar, R S Verma and A K Tiwari, J. Ocean Eng. Sci. 8, 111 (2023), https://doi.org/10.1016/j.joes.2021.11.00

    Article  Google Scholar 

  18. C M Khalique and O D Adeyemo, J. Ocean Eng. Sci. 8, 152 (2023), https://doi.org/10.1016/j.joes.2021.11.001

    Article  Google Scholar 

  19. S Rani, S Kumar and R Kumar, J. Ocean Eng. Sci. 8, 133 (2021), https://doi.org/10.1016/j.joes.2021.12.007

    Article  Google Scholar 

  20. A Akbulut, M Kaplan and Kaabar, J. Ocean Eng. Sci. 8, 103 (2021), https://doi.org/10.1016/j.joes.2021.12.004

  21. A Iqbal and I Naeem, Chaos Solitons Fractals 165, 112892 (2023), https://doi.org/10.1016/j.chaos.2022.112892

    Article  Google Scholar 

  22. M Bilal, H Haris, A Waheed and M Faheem, Int. J. Math. Comput. Eng. 1(2), 149 (2023), https://sciendo.com/article/10.2478/ijmce-2023-0012

  23. V G Drinfel’d and V V Sokolov, Sov. Math. Dokl. 23, 457 (1981)

    Google Scholar 

  24. G Wilson, Phys. Lett. A 89, 332 (1982), https://doi.org/10.1016/0375-9601(82)-90186-4

    Article  MathSciNet  ADS  Google Scholar 

  25. Md H Bashar, S M A Yiasir, S M R Islam and M M Rahman, J. Ocean Eng. Sci (2022), https://doi.org/10.1016/j.joes.2022.05.003

  26. S Shen, X Ding, R Zhang and X Hu, Mod. Phys. Lett. B 33, 1950329 (2019), https://doi.org/10.1142/S0217984919503299

    Article  ADS  Google Scholar 

  27. C Matjila, B Muatjetjeja and C M Khalique, Abst. Appl. Anal. 2014, 271960 (2014), https://doi.org/10.1155/2014/271960

    Article  Google Scholar 

  28. Inc Mustafa, Appl. Math. Comput. 172, 421 (2006), https://doi.org/10.1016/j.amc.2005.02.012

    Article  MathSciNet  Google Scholar 

  29. K Khan, M A Akbar and H Koppelaar, Roy. Soc. Open Sci. 2, 140406 (2015), https://doi.org/10.1098/rsos.140406

    Article  ADS  Google Scholar 

  30. B Ren, J Lin and Z M Lou, Appl. Math. Lett. 105, 106326 (2020), https://doi.org/10.1016/j.aml.2020.106326

    Article  MathSciNet  Google Scholar 

  31. Y Chen and W Qi, Chaos Solitons Fractals 24, 745 (2005), https://doi.org/10.1016/j.chaos.2004.09.014

    Article  MathSciNet  ADS  Google Scholar 

  32. C Yue, A Elmoasry, M M A Khater, M S Osman, R A M Attia, D Lu and N S Elazab, AIP Adv. 10, 045212 (2020)

    Article  ADS  Google Scholar 

  33. K U Tariq, A M Wazwaz and R Javed, Chaos Solitons Fractals 166, 112903 (2023)

    Article  Google Scholar 

  34. B Gasmi, A Ciancio, A Moussa, L Alhakim and Y Mati, Int. J. Math. Comput. Eng. 1(1), 79 (2023), https://sciendo.com/article/10.2478/ijmce-2023-0006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nİsa ÇelİK.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ÇelİK, N. New exact solution forms and stability aspects to Drinfel’d–Sokolov–Wilson model by using extended Jacobi elliptic rational function approach. Pramana - J Phys 98, 43 (2024). https://doi.org/10.1007/s12043-024-02735-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02735-0

Keywords

PACS

Navigation