Skip to main content
Log in

Effects of radiative heat flux on MHD squeezing Newtonian flow between convectively heated parallel disks

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper investigates the significance of thermal radiation on an unsteady 2D magnetohydrodynamic squeezed nanofluid flow with a convectively heated surface. Heat and mass transmissions occurring during thermal radiation and chemical reactions are modelled into a system of partial differential equations (PDEs) which are converted to a system of ordinary differential equations (ODEs) via suitable similarity variables. The numerical solution of the ordinary differential equations is carried out by a MATLAB routine bvp4c. The effect of various physical parameters such as squeezing, radiation, Hartman, Prandtl, Brownian motion, thermophoresis, Nusselt number and Sherwood number are analysed through graphs for the velocity, temperature and concentration profiles for both suction and blowing cases. Important quantities, such as skin friction, local Sherwood number and local Nusselt number are measured and elaborated. This study is validated by comparing it with previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J Stefan, Ann. der Phys. 230, 316 (1875)

    Article  ADS  Google Scholar 

  2. D C Kuzma, Appl. Sci. Res. 18, 15 (1968)

    Article  Google Scholar 

  3. A M Siddiqui, S Irum and A R Ansari, Math. Model. Anal. 13, 565 (2008)

    Article  MathSciNet  Google Scholar 

  4. E Sweet, K Vajravelu, R A Van Gorder and I Pop, Commun. Nonlinear Sci. Numer. Simul. 16, 266 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  5. G Domairry and A Aziz, Math. Probl. Eng. 2009, 603916 (2009)

    Article  Google Scholar 

  6. A A Joneidi, G Domairry and M Babaelahi, Chem. Eng. Commun. 198, 299 (2010)

    Article  Google Scholar 

  7. T Hayat, A Yousaf, M Mustafa and S Asghar, Chem. Eng. Commun. 199, 1044 (2012)

    Article  Google Scholar 

  8. L Fusi, A Farina and F Rosso, J. Non-Newtonian Fluid Mech. 225, 1 (2015)

    Article  MathSciNet  Google Scholar 

  9. R Cortell, Chem. Eng. Res. Design 89, 85 (2011)

    Article  Google Scholar 

  10. D Pal and S Chatterjee, Commun. Nonlinear Sci. Numer. Simul. 15, 1843 (2010)

    Article  ADS  Google Scholar 

  11. I A Badruddin, Z A Zainal, P A Narayana and K N Seetharamu, Int. J. Therm. Sci. 46, 20 (2007)

    Article  Google Scholar 

  12. I A Badruddin, Z A Zainal, Z A Khan and Z Mallick, Int. J. Therm. Sci. 46, 221 (2007)

    Article  Google Scholar 

  13. S E Ahmed et al, Nucl. Eng. Design 266, 34 (2014)

    Article  Google Scholar 

  14. S E Ahmed, H F Oztop and K Al-Salem, Comput. Fluids 102, 74 (2014)

    Article  Google Scholar 

  15. T R Mahapatraa, D Pala and S Mondal, Int. J. Appl. Math. Comput. 4, 359 (2012)

    Google Scholar 

  16. M S Astanina, M A Sheremet and J C Umavathi, Therm. Sci. 22 (1 Part B), 391 (2018)

    Article  Google Scholar 

  17. O S Adesanya, H A Ogunseye and S Jangili, Int. J. Therm. Sci. 125, 440 (2018)

    Article  Google Scholar 

  18. N Balazadeh, M Sheikholeslami, D D Ganji and Z Li, J. Mol. Liquids 260, 30 (2018)

    Article  Google Scholar 

  19. K Das, Int. J. Heat Mass Transfer 54, 3505 (2011)

    Article  Google Scholar 

  20. T Hayat, M Nawaz, M Sajid and S Asghar, Comput. Math. Appl. 58, 369 (2009)

    Article  MathSciNet  Google Scholar 

  21. K Bhattacharyya, S Mukhopadhyay, G C Layek and I Pop, Int. J. Heat Mass Transfer 55, 2945 (2012)

    Article  Google Scholar 

  22. I Ullah, M Waqas, T Hayat, A Alsaedi and M I Khan, J. Therm. Anal. Calorim. 135, 1021 (2019)

    Article  Google Scholar 

  23. R Mahato and M Das, Pramana – J. Phys. 94, 127 (2020)

    Article  ADS  Google Scholar 

  24. A S Oke and W N Mutuku, Pramana – J. Phys. 95(4), 199 (2021)

    Article  ADS  Google Scholar 

  25. A S Oke, E O Fatunmbi, I L Animasaun and B A Juma, Waves Random Complex Media, 1–20 (2022); https://doi.org/10.1080/17455030.2022.2123114

  26. I L Animasaun, A S Oke, Q M Al-Mdallal and A M Zidan, J. Therm. Anal. Calorim. 148, 4513 (2023)

    Article  Google Scholar 

  27. S Areekara, A S Sabu, A Mathew and A S Oke, Waves Random Complex Media, 1–20 (2023); https://doi.org/10.1080/17455030.2023.2198611

  28. A S Oke, T Eyinla and B A Juma, J. Eng. Res. Rep. 24, 26 (2023)

    Google Scholar 

  29. B Ali, N A Ahammad, W Windarto, A S Oke, N A Shah and J D Chung, Mathematics 11, 877 (2023)

    Article  Google Scholar 

  30. A S Oke, B C Prasannakumara, W N Mutuku, R P Gowda, B A Juma, R N Kumar and O I Bada, Sci. Rep. 12, 21733 (2022)

    Article  ADS  Google Scholar 

  31. A S Oke, Arab. J. Sci. Eng. 1–17

    Article  Google Scholar 

  32. A S Oke, J. Taiwan Inst. Chem. Eng. 132, 104152 (2022)

    Article  Google Scholar 

  33. A S Oke, Int. Commun. Heat Mass Transfer 129, 105695 (2021)

    Article  Google Scholar 

  34. B Ali, N A Ahammad, A U Awan, A S Oke, E M Tag-ElDin, F A Shah and S Majeed, Sustainability 14, 10474 (2022)

    Article  Google Scholar 

  35. T Rafiq and M Mustafa, Pramana – J. Phys. 95, 120 (2021)

    Article  ADS  Google Scholar 

  36. S G Martyushev and M A Sheremet, J. Eng. Thermophys. 21, 111 (2012)

    Article  Google Scholar 

  37. L F Shampine and J Kierzenka, ACM Trans. Math. Softw. 27, 299 (2001)

    Article  Google Scholar 

  38. A S Oke, J. Adv. Math. Comput. Sci. 24, 1 (2017)

    Article  Google Scholar 

  39. M M Hashmi, T Hayat and A Alsaedi, Nonlinear Anal.: Model. Control 17, 418 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Researchers Supporting Project (No. RSPD2023R802), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhefthi, R.K., Umavathi, J.C., Inc, M. et al. Effects of radiative heat flux on MHD squeezing Newtonian flow between convectively heated parallel disks. Pramana - J Phys 97, 178 (2023). https://doi.org/10.1007/s12043-023-02650-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02650-w

Keywords

PACS Nos

Navigation