Skip to main content

Advertisement

Log in

Traffic-driven epidemic spreading network dynamics with different routing strategies

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Although the interactions between traffic flow and epidemic spread dynamics have been extensively studied, the impact of routing strategies on the susceptible–infected–recovered (SIR) epidemic spread driven by traffic flow have not received enough attention. In this paper, the traffic-driven SIR epidemic spread model under the probability path routing strategy and the efficient path routing strategy are studied. The instantaneous scale \(I_{p}\) of the infected nodes’ density and the final scale \(R_{e}\) of the ever infected nodes’ density are obtained through simulation, and it is found that there exist optimal values of routing parameters to minimise \(I_{p}\) and \(R_{e}\), what is more, \(I_{p}\) and \(R_{e}\) under the probability path routing strategy are smaller than the values under the efficient path routing strategy. This means that the epidemic spreading can be effectively controlled by adjusting the routing strategy. In addition, when the routing parameter is the optimal value, the influence of packet generation rates, infection rates and cure rates on the epidemic spreading under different routing strategies is further discussed, and it is found that the higher the cure rate, the fewer nodes will be infected. Infected nodes’ density increases as the infection rate and packet generation rate increase, thereby accelerating epidemic spreading. These studies have certain guiding significance for controlling the spread of the epidemic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R Pastor-Satorras and A Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  2. M Barthélemy, A Barrat, R Pastor-Satorras and A Vespignani, Phys. Rev. Lett. 92, 178701 (2004)

    Article  ADS  Google Scholar 

  3. R Pastor-Satorras and A Vespignani, Phys. Rev. E 65, 035108 (2002)

    Article  ADS  Google Scholar 

  4. E Estrada, S Meloni, M Sheerin and Y Moreno, Phys. Rev. E 94, 052316 (2016)

    Article  ADS  Google Scholar 

  5. G Yan, Z Q Fu, J Ren and W X Wang, Phys. Rev. E 75, 016108 (2007)

    Article  ADS  Google Scholar 

  6. Z Ruan, M Tang and Z Liu, Phys. Rev. E 86, 036117 (2012)

    Article  ADS  Google Scholar 

  7. M Boguná, C Castellano and R Pastor-Satorras, Phys. Rev. Lett. 111, 068701 (2013)

    Article  ADS  Google Scholar 

  8. J L Ma, M Li and H J Li, IEEE Trans. Circ. Syst. II 69, 1697 (2021)

  9. S Lamzabi, S Lazfi, A Rachadi, H Ez-Zahraouy and A Benyoussef, Int. J. Mod. Phys. C 27, 1650068 (2016)

    Article  ADS  Google Scholar 

  10. R Pastor-Satorras, C Castellano, P Van Mieghem and A Vespignani, Rev. Mod. Phys. 87, 925 (2015)

    Article  ADS  Google Scholar 

  11. W O Kermack and A G McKendrick, Proc. R. Soc. London: Ser. A 115, 700 (1927)

    ADS  Google Scholar 

  12. D J Watts and S H Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  13. A L Barabási and R Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. S Meloni and J Gómez-Gardeñes, Phys. Rev. E 82, 056105 (2010)

    Article  ADS  Google Scholar 

  15. Y Wu, C Pu, L Li and G Zhang, Digit. Commun. Netw. 5, 56 (2019)

    Article  ADS  Google Scholar 

  16. S Meloni, A Arenas and Y Moreno, Proc. Natl. Acad. Sci. USA 106, 16897 (2009)

    Article  ADS  Google Scholar 

  17. S Meloni, N Perra, A Arenas, S Gomez, Y Moreno and A Vespignani, Sci. Rep. 1, 1 (2011)

    Article  Google Scholar 

  18. H X Yang, W X Wang, Y C Lai and B H Wang, Europhys. Lett. 98, 68003 (2012)

    Article  ADS  Google Scholar 

  19. H X Yang, W X Wang, Y C Lai, Y B Xie and B H Wang, Phys. Rev. E 84, 045101 (2011)

    Article  ADS  Google Scholar 

  20. H X Yang and Z X Wu, J. Stat. Mech.-Theory Exp. 2014, P03018 (2014)

    Article  Google Scholar 

  21. A Dwivedi, R Keval and S Khajanchi, Phys. Scr. 97(8), 085214 (2022)

  22. S Ghosh, A Senapati, J Chattopadhyay, C Hens and D Ghosh, Chaos 31, 071101 (2021)

    Article  ADS  Google Scholar 

  23. S Ghosh, A Senapati, A Mishra, J Chattopadhyay, S K Dana, C Hens and D Ghosh, Phys. Rev. E 104, 014308 (2021)

    Article  ADS  Google Scholar 

  24. S P Ansari, S K Agrawal and S Das, Pramana – J. Phys. 84, 23 (2015)

    Article  ADS  Google Scholar 

  25. F Nian and S Yao, Mod. Phys. Lett. B 31, 1750131 (2017)

    Article  ADS  Google Scholar 

  26. S M Salman, Pramana – J. Phys. 92, 1 (2019)

    Article  ADS  Google Scholar 

  27. L Zhu, X Wang, H Zhang, S Shen, Y Li and Y Zhou, Phys. Scr. 95, 035213 (2020)

    Article  ADS  Google Scholar 

  28. H X Yang, Z X Wu and B H Wang, Phys. Rev. E 87, 064801 (2013)

    Article  ADS  Google Scholar 

  29. M Barthelemy, A Barrat, R Pastor-Satorras and A Vespignani, J. Theor. Biol. 235, 275 (2005)

    Article  ADS  Google Scholar 

  30. P Echenique, J Gómez-Gardeñes and Y Moreno, Phys. Rev. E 70, 056105 (2004)

    Article  ADS  Google Scholar 

  31. W X Wang, B H Wang, C Y Yin, Y B Xie and T Zhou, Phys. Rev. E 73, 026111 (2006)

    Article  ADS  Google Scholar 

  32. G Yan, T Zhou, B Hu, Z Q Fu and B H Wang, Phys. Rev. E 73, 046108 (2006)

    Article  ADS  Google Scholar 

  33. M Tang, Z Liu, X Liang and P M Hui, Phys. Rev. E 80, 026114 (2009)

    Article  ADS  Google Scholar 

  34. X Ling, M B Hu, R Jiang and Q S Wu, Phys. Rev. E 81, 016113 (2010)

    Article  ADS  Google Scholar 

  35. R Yang, B H Wang, J Ren, W J Bai, Z W Shi, W X Wang and T Zhou, Phys. Lett. A 364, 189 (2007)

  36. C Pu, S Li, X X Yang, Z Xu, Z Ji and J Yang, Physica A 446, 129 (2016)

  37. P Bajardi, C Poletto, J J Ramasco, M Tizzoni, V Colizza and A Vespignani, PLoS ONE 6, e16591 (2011)

    Article  ADS  Google Scholar 

  38. R Guimerà, A Díaz-Guilera and F Vega-Redondo, Phys. Rev. Lett. 89, 248701 (2002)

    Article  ADS  Google Scholar 

  39. M E J Newman, Phys. Rev. E 64, 016132 (2001)

    Article  ADS  Google Scholar 

  40. G Li, S D S Reis, A A Moreira, S Havlin, H E Stanley and J S Andrade Jr, Phys. Rev. Lett. 104, 018701 (2010)

  41. X Zhang, Z He, Z He and L Rayman-Bacchus, Physica A 392, 953 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of Hebei Province (Grant No. F2022208002) and Technology Project of Hebei Education Department (Key Program) (Grant Nos ZD2021048 and ZD2022031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Long Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Ma, JL., Xiang, TT. et al. Traffic-driven epidemic spreading network dynamics with different routing strategies. Pramana - J Phys 97, 134 (2023). https://doi.org/10.1007/s12043-023-02616-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02616-y

Keywords

PACS

Navigation