Skip to main content
Log in

Determination of γ-ray energy transfer buildup factor in water and some human tissues using Monte Carlo simulation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The photon buildup factors have been proposed to consider the produced secondary photon sources during the interactions of γ-rays with the material. In the study of γ-ray dosimetry and γ-ray shielding, different photon buildup factors have been introduced, including number buildup factor, exposure buildup factor (EBF) and energy absorption buildup factor (EABF). In the present study, a new type of buildup factor, energy transfer buildup factor (ETBF), was calculated and compared with EABF. To the best of the authors’ knowledge, the ETBF has not been calculated so far. The calculations were carried out for 1–20 MeV photons in soft tissue, lung, brain and water up to the depth of 10 mean free path (MFP) using MCNP6.1. While comparing the ETBF and the EABF, it was found that the relative difference between the ETBF and the EABF was increased by increasing the photon energy and MFP. To be specific, the relative difference between the ETBF and the EABF in the soft tissue for 1 MeV photon was in the range of 0–0.19%, while it was in the range between 1.5 and 2.86% for 20 MeV photon. In addition, to interpolate the ETBF, the parameters of the G-P fitting formula were determined. For validation, the values of ETBF and EABF were calculated in water and soft tissue, respectively and a good agreement was observed with the obtained values from the FLUKA code and MCNP5 code. Finally, it can be stated that the calculation of the ETBF for high photon energies leads to useful and practical results in dosimetry and shielding design of γ-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. G R White, Phys. Rev. 80, 154 (1950), https://doi.org/10.1103/PhysRev.80.154

    Article  ADS  Google Scholar 

  2. U Fano, Nucleonics 11, 9 (1953), https://www.osti.gov/biblio/4422059

  3. Y Harima, Radiat. Phys. Chem. 41, 4 (1993), https://doi.org/10.1016/0969-806X(93)90317-N

    Article  Google Scholar 

  4. H Goldstein and J E Wilkins Jr, Calculations of the penetrations of gamma rays (NSA-09-002472, United States, 1954), https://doi.org/10.2172/4394676

    Book  Google Scholar 

  5. C M Eisenhauer and G L Simmons, Nucl. Sci. Eng. 56, 3 (1975), https://doi.org/10.13182/NSE75-A26739

    Article  Google Scholar 

  6. A B Chilton, C M Eisenhauer and G L Simmons, Nucl. Sci. Eng. 73, 1 (1980), https://doi.org/10.13182/NSE80-A18714

    Article  Google Scholar 

  7. K Takeuchi and S Tanaka, PALLAS-PL, SP-Br: a code for direct integration of transport equation in one-dimensional plane and spherical geometries (JAERI-M--9695, Japan, 1981), https://doi.org/10.11484/jaeri-m-9695

    Book  Google Scholar 

  8. K Takeuchi and S Tanaka, PALLAS-1D(VII): A code for direct integration of transport equation in one-dimensional plane and spherical geometries (JAERI-M-84-214, Japan, 1984), https://inis.iaea.org/search/search.aspx?orig_q=RN:16086506

  9. D V Gopinath, K V Subbaiah and D K Trubey, Nucl. Sci. Eng. 97, 4 (1987), https://doi.org/10.13182/NSE87-A23519

    Article  Google Scholar 

  10. H Hirayama and D K Trubey, Nucl. Sci. Eng. 99, 2 (1988), https://doi.org/10.13182/NSE88-A23555

    Article  Google Scholar 

  11. K V Subbaiah, A Natarajan and D V Gopinath, Nucl. Sci. Eng. 101, 4 (1989), https://doi.org/10.13182/NSE89-A23624

    Article  Google Scholar 

  12. ANSI\(/\)ANS-6.4.3-1991, Gamma-ray attenuation coefficients and buildup factors for engineering materials (American Nuclear Society, La Grange Park, 1991), https://webstore.ansi.org/Standards/ANSI/ansians1991-1534182

  13. O Chibani, Nucl. Sci. Eng. 137, 2 (2001), https://doi.org/10.13182/NSE01-A2187

    Article  Google Scholar 

  14. J C Ryman et al, Trans. Am. Nucl. Soc. 99, (2008)

    Google Scholar 

  15. L P Ruggieri, Update to ANSI\(/\)ANS-643-1991 for high-Z materials and review of particle transport theory (UNLV Retrospective Theses & Dissertations, 2427, 2008), https://doi.org/10.25669/xc1i-qbff

  16. L Durani, Update to ANSI\(/\)ANS-6.4.3-1991 for low-Z and compound materials and review of particle transport theory (UNLV Theses, Dissertations, Professional Papers and Capstones, 43, 2009), https://doi.org/10.34917/1363554

  17. C E Sanders, Proceedings Paper, ICONE18-30212 (2010), https://doi.org/10.1115/ICONE18-30212

  18. N Tsoulfanidis and S Landsberger, Measurement and detection of radiation (CRC Press, New York, 2015), https://doi.org/10.1201/b18203

    Book  Google Scholar 

  19. R Khabaz, Eur. Phys. J. Plus 137, 344 (2022), https://doi.org/10.1140/epjp/s13360-022-02550-9

    Article  Google Scholar 

  20. O Kadri and A Alfuraih, Appl. Sci. 12, 2 (2022), https://doi.org/10.3390/app12020798

    Article  Google Scholar 

  21. M I Sayyed, M Y Hanfi, K A Mahmoud and A Abdelaziem, Optik 258, 168851 (2022), https://doi.org/10.1016/j.ijleo.2022.168851

    Article  ADS  Google Scholar 

  22. I Akkurt and R B Malidarre, Radiat. Phys. Chem. 193, 109958 (2022), https://doi.org/10.1016/j.radphyschem.2021.109958

    Article  Google Scholar 

  23. D Sardari, S Baradaran, F B Mofrad and N Marzban, Appl. Radiat. Isot. 183, 110150 (2022), https://doi.org/10.1016/j.apradiso.2022.110150

    Article  Google Scholar 

  24. E Sakar et al, Radiat. Phys. Chem. 166, 108496 (2020), https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  Google Scholar 

  25. M Kurudirek and Y Kurucu, Radiat. Eff. Defects Solids 175, 7 (2020), https://doi.org/10.1080/10420150.2020.1737694

    Article  Google Scholar 

  26. M Dong et al, Prog. Nucl. Energy 146, 104155 (2022), https://doi.org/10.1016/j.pnucene.2022.104155

    Article  MathSciNet  Google Scholar 

  27. H M H Zakaly et al, J. Mater. Res. Technol. 18, 1424 (2022), https://doi.org/10.1016/j.jmrt.2022.03.030

    Article  Google Scholar 

  28. I O Olarinoye et al, Heliyon 5, 7 (2019), https://doi.org/10.1016/j.heliyon.2019.e02017

    Article  Google Scholar 

  29. K S Mann and S S Mann, Ann. Nucl. Energy 150, 107845 (2021), https://doi.org/10.1016/j.anucene.2020.107845

    Article  Google Scholar 

  30. D Sardari, A Abbaspour, S Baradaran and F Babapour, Appl. Radiat. Isot. 67, 7 (2009), https://doi.org/10.1016/j.apradiso.2009.02.033

    Article  Google Scholar 

  31. H Hirayama, J. Nucl. Sci. 32, 12 (1995), https://doi.org/10.1080/18811248.1995.9731842

    Article  Google Scholar 

  32. I Jarrah et al, Radiat. Phys. Chem. 160, 15 (2019), https://doi.org/10.1016/j.radphyschem.2019.03.008

    Article  ADS  Google Scholar 

  33. A Angelopoulos et al, Phys. Med. Biol. 36, 6 (1991), https://doi.org/10.1088/0031-9155/36/6/005

    Article  Google Scholar 

  34. K Moshkbar-Bakhshayesh, S Mohtashami and M Sahraeian, Ann. Nucl. Energy 152, 108023 (2021), https://doi.org/10.1016/j.anucene.2020.108023

    Article  Google Scholar 

  35. D Sardari, S Saudi and M Tajik, Ann. Nucl. Energy 38, 2 (2011), https://doi.org/10.1016/j.anucene.2010.09.007

    Article  Google Scholar 

  36. H Kharrati, A Agrebi and Mohamed-Karim Karaoui, Med. Phys. 34, 4 (2007), https://doi.org/10.1118/1.2710333

    Article  Google Scholar 

  37. A Das and T Singh, Radiat. Phys. Chem. 194, 110028 (2022), https://doi.org/10.1016/j.radphyschem.2022.110028

    Article  Google Scholar 

  38. A Das, A Ray and T Singh, Radiat. Phys. Chem. 196, 110122 (2022), https://doi.org/10.1016/j.radphyschem.2022.110122

    Article  Google Scholar 

  39. O Kadri and A Alfuraih, Nucl. Sci. Tech. 30, 176 (2019), https://doi.org/10.1007/s41365-019-0701-4

    Article  Google Scholar 

  40. A A Alfuraih and O M Kadri, Dose-Response (2022), https://doi.org/10.1177/15593258211068621

    Article  Google Scholar 

  41. M M Rafiei and H Tavakoli-Anbaran, J. Radiol. Prot. 38, 1 (2018), https://doi.org/10.1088/1361-6498/aa9cfa

    Article  Google Scholar 

  42. M M Rafiei and H Tavakoli-Anbaran, Eur. Phys. J. Plus 133, 548 (2018), https://doi.org/10.1140/epjp/i2018-12355-8

    Article  Google Scholar 

  43. M M Rafiei, S Parsaei and M Kurudirek, JINST 15, T11004 (2020), https://doi.org/10.1088/1748-0221/15/11/T11004

    Article  ADS  Google Scholar 

  44. M M Rafiei, H Tavakoli-Anbaran and M Kurudirek, Radiat. Phys. Chem. 177, 109118 (2020), https://doi.org/10.1016/j.radphyschem.2020.109118

    Article  Google Scholar 

  45. P Kaur et al, J. Phys. Chem. Solids 150, 109812 (2021), https://doi.org/10.1016/j.jpcs.2020.109812

    Article  Google Scholar 

  46. E Kavaz et al, Int. J. Radiat. Biol. 92, 7 (2016), https://doi.org/10.1080/09553002.2016.1175681

    Article  Google Scholar 

  47. H H Saleh, J M Sharaf and R S Abady, Appl. Radiat. Isot. 167, 109464 (2021), https://doi.org/10.1016/j.apradiso.2020.109464

    Article  Google Scholar 

  48. Y Harima et al, Nucl. Sci. Eng. 94, 1 (1986), https://doi.org/10.13182/NSE86-A17113

    Article  ADS  Google Scholar 

  49. M S Al-Buriahi et al, Prog. Nucl. Energy 137, 103763 (2021), https://doi.org/10.1016/j.pnucene.2021.103763

    Article  Google Scholar 

  50. S S Obaid et al, Radiat. Phys. Chem. 148, 86 (2018), https://doi.org/10.1016/j.radphyschem.2018.02.026

    Article  ADS  Google Scholar 

  51. H O Tekin et al, Mater. Res. Express 6, 11 (2019), https://doi.org/10.1088/2053-1591/ab4cb5

    Article  Google Scholar 

  52. K I P Kartha et al, Am. J. Roentgenol. 96, 1 (1966), https://doi.org/10.2214/ajr.96.1.66

    Article  Google Scholar 

  53. L L Meisberger et al, Radiology 90, 5 (1968), https://doi.org/10.1148/90.5.953

    Article  Google Scholar 

  54. A Shimizu, T Onda and Y Sakamoto, J. Nucl. Sci. 41, 4 (2004), https://doi.org/10.1080/18811248.2004.9715503

    Article  Google Scholar 

  55. N Kucuk, Expert Syst. Appl. 37, 5 (2010), https://doi.org/10.1016/j.eswa.2009.11.047

    Article  Google Scholar 

  56. A B Chilton, J K Shultis and R E Faw, Principles of radiation shielding (Prentice Hall, London, 1984), https://inis.iaea.org/Search/search.aspx?orig_q=source:%22ISBN%200-13-709907-X%22

  57. T Goorley et al, Nucl. Technol. 180, 3 (2012), https://doi.org/10.13182/NT11-135

    Article  Google Scholar 

  58. D R White et al, ICRU Report 44, J ICRU os-23, 1 (1989), https://journals.sagepub.com/toc/crub/os-23/1

  59. J H Hubbell and S M Seltzer, Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest (NIST, NISTIR 5632, 2004), https://doi.org/10.18434/T4D01F

  60. D B Pelowitz, MCNP6TM User’s Manual Version 1.0 LA-CP-13-00634, Rev. 0 (Los Alamos National Laboratory, 2013), https://mcnp.lanl.gov/mcnp_manual.shtml

  61. Website: https://fluka.cern

  62. C Ahdida et al, Front. Phys. 9, 788253 (2022), https://doi.org/10.3389/fphy.2021.788253

    Article  Google Scholar 

  63. G Battistoni et al, Ann. Nucl. Energy 82, 10 (2015), https://doi.org/10.1016/j.anucene.2014.11.007

    Article  Google Scholar 

  64. F H Attix, Introduction to radiological physics and radiation dosimetry (Wiley-VCH Verlag GmbH, Mörlenbach, 2004), https://doi.org/10.1002/9783527617135

    Book  Google Scholar 

  65. H Cember and T E Johnson, Introduction to health physics 4th Edn (McGraw-Hill Medical, New York, 2009),

    Google Scholar 

  66. P D Higgins et al, Mass energy-transfer and mass energy-absorption coefficients, including in-flight positron annihilation for photon energies 1 keV to 100 MeV (NISTIR 4812, 1991), https://www.osti.gov/biblio/5888257-mass-energy-transfer-mass-energy-absorption-coefficientsincluding-flight-positron-annihilation-photon-energies-kev-mev.

  67. M M Rafiei and S Parsaei, JINST 16, T10005 (2021), https://doi.org/10.1088/1748-0221/16/10/T10005

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Mohammad Rafiei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Rafiei, M., Noori, H., Parsaei, S. et al. Determination of γ-ray energy transfer buildup factor in water and some human tissues using Monte Carlo simulation. Pramana - J Phys 97, 131 (2023). https://doi.org/10.1007/s12043-023-02611-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02611-3

Keywords

PACS Nos

Navigation