Skip to main content
Log in

An improved decomposition method for extracting unknown rolling bearing fault features from strong noise

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Many decomposition methods have been developed and applied to find bearing fault in recent years, but it is quite difficult to effectively extract the bearing fault characteristics, especially under strong noise and variable speed conditions. Among them, empirical mode decomposition (EMD) is the most widely used. To improve the extraction effect of rolling bearing fault features, this paper proposes a bearing fault extraction algorithm based on fractional Fourier transform (FRFT). The collected vibration signal is first analysed by envelope demodulation and mean normalisation. Secondly, the EMD method is used to remove many noise interferences and retain the bearing fault characteristics. Finally, an effective FRFT filtering algorithm is applied to find fault characteristic signal and remove the residual noise. Both simulated and experimental analyses are conducted to illustrate the performance of the proposed method. The results indicate that this method can accurately and completely extract the unknown bearing fault features from raw signal, which contains noise and irrelevant vibration signals. The proposed algorithm may provide reference for the fault diagnosis of other machine elements, such as gears.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R B Randall and J Antoni, Mech. Syst. Signal Process. 25, 485 (2011)

    Article  ADS  Google Scholar 

  2. I El-Thalji and E Jantunen, Mech. Syst. Signal Process. 60, 252 (2015)

    Article  ADS  Google Scholar 

  3. Z Feng, X Chen and T Wang, J. Sound Vib. 400, 71 (2017)

    Article  ADS  Google Scholar 

  4. M Zhao, J Lin, X Xu and Y Lei, Sensors 13, 10856 (2013)

    Article  ADS  Google Scholar 

  5. P Borghesani and R Ricci, Mech. Syst. Signal Process. 38, 23 (2013)

    Article  ADS  Google Scholar 

  6. T Wang, M Liang, J Li and W Cheng, Mech. Syst. Signal Process. 45, 139 (2014)

    Article  ADS  Google Scholar 

  7. C Mishra, A K Samantaray and G Chakraborty, Mech. Syst. Signal Process. 72, 206 (2016)

    Article  ADS  Google Scholar 

  8. N E Huang et al, Proc. R. Soc. A 459, 2317 (2003)

    Article  ADS  Google Scholar 

  9. Y Lei, J Lin, Z He and M J Zuo, Mech. Syst. Signal Process. 35, 108 (2013)

    Article  ADS  Google Scholar 

  10. S Mohanty, K K Gupta and K S Raju, IET Sci. Meas. Technol. 11, 30 (2017)

    Google Scholar 

  11. Y Xu, Z Cai and K Ding, Sci. Technol. 29, 095108 (2018)

    ADS  Google Scholar 

  12. Y Sun, S Li and X Wang, Measurement 176, 109100 (2021)

    Article  Google Scholar 

  13. C Yin et al, Mech. Syst. Signal Process. 171, 108834 (2022)

    Article  MathSciNet  Google Scholar 

  14. J Shi, M Liang, D S Necsulescu and Y Guan, J. Sound Vib. 368, 202 (2016)

    Article  ADS  Google Scholar 

  15. C Li, V Sanchez, G Zurita, M Cerrada Lozada and D Cabrera, ISA Trans. 60, 274 (2016)

    Article  Google Scholar 

  16. J Mei, J Jia, R Zeng, B Zhou and H Zhao, Measurement 91, 532 (2016)

    Article  ADS  Google Scholar 

  17. L B Almeida, IEEE Trans. Signal Process. 42, 3084 (1994)

    Article  ADS  Google Scholar 

  18. H M Ozaktas and O Ankan, IEEE Trans. Signal Process. 44, 2141 (1996)

    Article  ADS  Google Scholar 

  19. H Xu and F Liu, IEEE Int. Conf. Inf. Autom. ICIA 408 (2010)

  20. S A Elgamel and J J Soraghan, IEEE Signal Process. Lett. 18, 263 (2011)

    Article  ADS  Google Scholar 

  21. H Hao, Optik 124, 6093 (2013)

    Article  ADS  Google Scholar 

  22. X Li, Z Ma, D Kang and X Li, Meas. J. Int. Meas. Conf. 155, 107554 (2020)

    Google Scholar 

  23. G Tang, Y Huang and Y Wang, Measurement 171, 108777 (2021)

    Article  Google Scholar 

  24. J Yang, C Wu, Z Shan, H Liu and C Yang, Meas. Sci. Technol. 32, 105021 (2021)

    Article  ADS  Google Scholar 

  25. G Chen et al, Meas. Sci. Technol. 32, 115024 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  26. Z Feng, X Chen and T Wang, J. Sound Vib. 400, 71 (2017)

    Article  ADS  Google Scholar 

  27. K Dragomiretskiy and D Zosso, IEEE Trans. Signal Process. 62, 531 (2013)

    Article  ADS  Google Scholar 

  28. S Chen et al, IEEE Trans. Signal Process. 65, 6024 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Z Meng et al, Meas. Sci. Technol. 33, 125107 (2022)

    Article  ADS  Google Scholar 

  30. S Chen et al, J. Sound Vib. 440, 83 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Jiang, B., Zhu, J. et al. An improved decomposition method for extracting unknown rolling bearing fault features from strong noise. Pramana - J Phys 97, 71 (2023). https://doi.org/10.1007/s12043-023-02542-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02542-z

Keywords

PACS

Navigation