Skip to main content
Log in

Influence of Thompson and Troian slip on the nanofluid flow past a permeable plate in porous medium

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The aim of the present analysis is to study the influence of Thompson and Troian slip on forced convective nanofluid flow over a permeable plate in Darcy porous medium in the presence of zero nanoparticle flux at the boundary. By the appropriate make-over, the foremost partial differential equations (PDEs) are abridged to ordinary differential equations (ODEs) and numerical solutions for the nonlinear equations are subsequently attained by shooting technique. Due to enhanced permeability parameter, speed and concentration of the liquid increase but the width of the momentum boundary layer and temperature reduce. The current analysis discloses that by reducing the width of the boundary level, the rising (velocity) slip parameter forces the fluid speed and concentration to increase while dimensionless temperature reduces for increasing (velocity) slip. Compared to blowing, liquid speed and concentration are superior for suction. With the rise in Brownian motion parameter, concentration diminishes whereas with the rise in thermophoresis parameter, temperature is found to rise. The results achieved in this examination expose various motivating characteristics which demand additional investigation of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A K Singha, G S Seth, K Bhattacharyya, D Yadav, A K Verma and A K Pandey, J. Nanofluids 10, 506 (2021)

    Article  Google Scholar 

  2. S U S Choi, Developments and applications of non-Newtonian flows edited by D A Siginer and H P Wang (ASME, New York, 1995) Vol. 66, p. 99

  3. A K Verma, S Rajput, K Bhattacharyya and A J Chamkha, Chem. Eng. J. Adv. 12, 100366 (2022)

    Article  Google Scholar 

  4. A K Verma, A K Gautam, K Bhattacharyya and I Pop, Pramana – J. Phys. 95, 1 (2021)

  5. A K Verma, K Bhattacharyya, S Rajput, M S Mandal, A J Chamkha and D Yadav, Waves Random Complex Media 19, 1 (2022)

    Article  Google Scholar 

  6. T Sravan Kumar, Partial Diff. Eqns. Appl. Math. 4, 100070 (2021)

  7. M T Akolade and Y O Tijani, Partial Diff. Eqns. Appl. Math. 4, 100108 (2021)

  8. I Waini, A Ishak and I Pop, Int. J. Numer. Methods Heat Fluid Flow 31, 766 (2021)

  9. H Aly Emad and I Pop, Powder Technol. 367, 192 (2020)

  10. M S Ansari, V M Magagula and M Trivedi, Heat Transfer Res. 49(3), 1491 (2020), https://doi.org/10.1002/htj.21673.

    Article  Google Scholar 

  11. A K A Hakeem, P Ragupathi, S Saranya and B Ganga, J. Appl. Comput. Mech. 6(4), 1012 (2020)

    Google Scholar 

  12. B Mahanthesh, B J Gireesha and R S R Gorla, J. Niger. Math Soc. 35, 178 (2016)

    Article  Google Scholar 

  13. D Pal and I S Shivakumara, Int. J. Appl. Mech. Eng. 11(4), 929 (2006)

    Google Scholar 

  14. I Waini, A Ishak and I Pop, Int. Commun. Heat Mass Transf. 130, 105804 (2022)

    Article  Google Scholar 

  15. M Sheikholeslami, M A Sheremet, A Shafee and I Tlili, Phys. A Stat. Mech. Appl. 550, 124058 (2020)

    Article  Google Scholar 

  16. N S Elgazery, J. Egypt. Math. Soc. 27, 39 (2019), https://doi.org/10.1186/s42787-019-0017-x

    Article  MathSciNet  Google Scholar 

  17. P Sreedevi, P S Reddy, K V S N Rao and A J Chamkha, J. Nanofluids 6, 478 (2017)

    Article  Google Scholar 

  18. W A Khan, O D Makinde and Z H Khan, Int. J. Heat Mass Transf. 74, 285 (2014)

    Article  Google Scholar 

  19. S Mukhopadhyay, Ain Shams Eng. J. 4, 317 (2013), https://doi.org/10.1016/j.asej.2012.07.003

    Article  Google Scholar 

  20. M Turkyilmazoglu, ASME J. Heat Transf. 134(7), 071701 (2012)

  21. M J Martin and L D Boyd, J. Thermophys. Heat Transf. 20, 710 (2006)

    Article  Google Scholar 

  22. R Ellahi, T Hayat, F M Mahomed and A Zeeshan, Z. Angew. Math. Phys. 61, 877 (2010)

    Google Scholar 

  23. C L M H Navier, Mem. Acad. R. Sci. Inst. France 6, 389 (1823)

    Google Scholar 

  24. A K Pandey and M Kumar, Alex. Eng. J. 56, 671 (2017)

    Article  Google Scholar 

  25. R Kumar, S Sood, S A Shehzad and M Sheikholeslami, Results Phys. 7, 3325 (2017)

    Article  ADS  Google Scholar 

  26. K Gangadhar, V Ramana, D Ramaiah and B R Kumar, Int. J. Eng. Technol. 7, 225 (2018)

    Google Scholar 

  27. N A Zainal, R Nazar, K Naganthran and I Pop, Mathematics 8, 1649 (2020), https://doi.org/10.3390/math8101649

    Article  Google Scholar 

  28. A K Gautam, S Rajput, K Bhattacharyya, A K Pandey, A J Chamkha and M Begum, Chem. Eng. J. Adv. 12, 100365 (2022)

    Article  Google Scholar 

  29. A K Gautam, S Rajput, K Bhattacharyya, A K Verma, M G Arif and A J Chamkha, Partial Diff. Eqns. Appl. Math. 6, 100434 (2022)

  30. S Rajput, K Bhattacharyya, A K Verma, M S Mandal, A J Chamkha and D Yadav, https://doi.org/10.1080/17455030.2022.2063986 (2022)

  31. J C Maxwell, The scientific papers of James Clerk Maxwell (Cambridge University Press, Cambridge, 1890) Vol. 2, p. 703

  32. J J Thalakkottor and K Mohseni, Phys. Rev. E 94, 023113 (2016)

    Article  ADS  Google Scholar 

  33. P A Thompson and S M Troian, Nature 389(6649), 360 (1997)

    Article  ADS  Google Scholar 

  34. S Ahmad and S Nadeem, Appl. Nanosci., https://doi.org/10.1007/s13204-020-01267-4 (2020)

  35. M Ramzan, J D Chung, S Kadry, Y-M Chu and M Akhtar, Sci. Rep. 10, 18710 (2020)

  36. S Nadeem, S Ahmad and M N Khan, J. Therm. Anal. Cal., https://doi.org/10.1007/s10973-020-09747-z (2020)

    Article  Google Scholar 

  37. S Ghosh, S Mukhopadhyay and K Vajravelu, Appl. Math. Nonlin. Sci. 6(2), 361 (2021)

  38. K Bhattacharyya, S Mukhopadhyay and G C Layek, J. Pet. Sci. Eng. 78, 304 (2011)

    Article  Google Scholar 

  39. S Mukhopadhyay, P R De, K Bhattacharyya, G C Layek, Meccanica 47, 153 (2011), https://doi.org/10.1007/s11012-011-9423-3

    Article  Google Scholar 

  40. L Howarth, Proc. R. Soc. London A 164, 547 (1938)

    Article  ADS  Google Scholar 

  41. H Blasius, Z. Math. Phys. 56, 1 (1908)

    Google Scholar 

  42. A Ishak, R Nazar and I Pop, Heat Mass Transf. 45, 563 (2009), https://doi.org/10.1007/s00231-008-0462-9.

    Article  ADS  Google Scholar 

  43. A K Verma, A K Gautam, K Bhattacharyya, A Banerjee and A J Chamkha, Pramana – J. Phys. 95, 173 (2021), https://doi.org/10.1007/s12043-021-02215-9

Download references

Acknowledgements

The authors thank the learned reviewers for constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Mukhopadhyay, S. & Mandal, M.S. Influence of Thompson and Troian slip on the nanofluid flow past a permeable plate in porous medium. Pramana - J Phys 97, 66 (2023). https://doi.org/10.1007/s12043-023-02539-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02539-8

Keywords

PACS Nos

Navigation