Skip to main content
Log in

Effect of charge on the maximum mass of the anisotropic strange quark star

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this article, we have studied the solutions of Einstein–Maxwell field equations for compact objects in the presence of net electric charge. Interior physical 3-space is defined by Vaidya–Tikekar metric in spheroidal geometry. The metric is characterised by two parameters, namely, spheroidal parameter K and curvature parameter R. The nature of the interior fluid is considered to be anisotropic. Assuming strange matter equation of state (EOS) in the MIT Bag model for the interior matter content, namely, \(p=\frac{1}{3}(\rho -4B)\), where B is the Bag constant, we determine various physical properties of the charged compact star. We have taken the value of surface density \(\rho _{s}\) \((=4B)\) as a probe to evaluate the mass–radius relation for the compact star in the presence of net electric charge and using the range of B necessary for possible stable strange matter. It is interesting to note that in this model there exist a maximum radius of a star which depends on B. We further note that compactness of the star corresponding to the maximum radius always lies below the Buchdahl limit \((<\frac{4}{9})\) for the maximum allowed value of the pressure anisotropy and electromagnetic field. Energy and causality conditions hold good throughout the star in the presence of charge also. Prediction of mass of the strange stars is possible in the present model. We have determined mass, radius, surface red-shift and other relevant physical parameters of the compact objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. R C Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  2. J R Oppenheimer and G M Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  3. P C Vaidya and R Tikekar, J. Astrophys. Astron. 3, 325 (1982)

    Article  ADS  Google Scholar 

  4. R Tikekar, J. Math. Phys. 31, 2454 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  5. S Mukherjee, B C Paul and N K Dadhich, Class. Quantum Gravit. 14, 3475 (1997)

    Article  ADS  Google Scholar 

  6. M Dey, I Bombaci, J Dey, S Ray and B C Samanta, Phys. Lett. B 438, 123 (1998); Addendum 447, 352 (1999); Erratum 467, 303 (1999)

  7. X D Li, I Bombaci, M Dey, J Dey and E P J Van del Heuvel, Phys. Rev. Lett. 83, 3776 (1999)

    Article  ADS  Google Scholar 

  8. R Sharma, S Mukherjee, M Dey and J Dey, Mod. Phys. Lett. A 17, 827 (2002)

    Article  ADS  Google Scholar 

  9. R Tikekar and K Jotania, Int. J. Mod. Phys. D 14, 1037 (2005)

    Article  ADS  Google Scholar 

  10. P K Chattopadhyay and B C Paul, Pramana – J. Phys. 74, 513 (2010)

    Google Scholar 

  11. R Sharma and S Mukherjee, Mod. Phys. Lett. A 16, 1049 (2001)

    Article  ADS  Google Scholar 

  12. R Sharma, S Mukherjee and S D Maharaj, Gen. Relativ. Gravit. 33, 999 (2001)

    Article  ADS  Google Scholar 

  13. R Sharma and S Mukerjee, Phys. Lett. A 38, 2535 (2002)

    Google Scholar 

  14. R Sharma, S Mukerjee and S D Maharaj, Mod. Phys. Lett. A 15, 1341 (2000)

    Article  ADS  Google Scholar 

  15. R Sharma, S Karmakar and S Mukherjee, Int. J. Mod. Phys. D 15, 405 (2006)

    Article  ADS  Google Scholar 

  16. S Karmakar, S Mukherjee, R Sharma and S D Maharaj, Pramana – J. Phys. 68, 881 (2007)

    Google Scholar 

  17. Ch Kettner, F Weber, M K Weigel and N K Glendenning, Phys. Rev. D 51, 1440 (1995)

  18. J Madsen, Lect. Notes Phys. 516, 162 (1999)

    Article  ADS  Google Scholar 

  19. N Itoh, Prog. Theor. Phys. 44, 291 (1970)

    Article  ADS  Google Scholar 

  20. A R Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  21. E Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  22. J Kapusta, Finite-temperature field theory (Cambridge Univ. Press, Cambridge, 1994) pp. 163–165

    Google Scholar 

  23. E Farhi and R L Jaffe, Phys. Rev. D 30, 2379 (1984)

    Article  ADS  Google Scholar 

  24. L Herrera and N O Santos, Phys. Rep. 286, 53 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  25. R Kippenhahn and A Weigert, Stellar structure and evolution, 2nd Edn (Springer-Verlag, Berlin, 1990)

    Book  MATH  Google Scholar 

  26. Fifty years of nuclear BCS: Pairing in finite systems edited by R A Broglia and V Zelevinsky (World Scientific Publishing Co. Pvt. Ltd., 2013)

  27. D Page, J M Lattimer and M Prakash, Novel superfluids edited by K H Bennemann and J B Ketterson (Oxford University Press, 2014) Vol. 2, p. 505

  28. R F Sawyer, Phys. Rev. Lett. 29, 382 (1972)

    Article  ADS  Google Scholar 

  29. A I Sokolov, JETP 79, 1137 (1980)

    Google Scholar 

  30. H Reissner, Ann. Phys. 50, 106 (1916)

    Article  Google Scholar 

  31. G Nordström, Verhandl. Koninkl. Ned. Akad. Wetenschap., Afdel. Natuurk. 26, 1201 (1918)

  32. L K Patel, R Tikekar and M C Sabu, Gen. Rel. Grav. 29, 489 (1997)

    Article  ADS  Google Scholar 

  33. R Tikekar and G P Singh, Gravit. Cosmol. 4, 294 (1998)

    ADS  MathSciNet  Google Scholar 

  34. P K Chattopadhyay, R Deb and B C Paul, Int. J. Mod. Phys. D 4, 294 (2012)

    Google Scholar 

  35. A Krasinski, Inhomogeneous cosmological models (Cambridge University Press, Cambridge, 1997)

    Book  MATH  Google Scholar 

  36. A Treves and R Turolla, Astrophys. J. 517, 396 (1999)

    Article  ADS  Google Scholar 

  37. S Rosseland, Mon. Not. R. Astron. Soc 84, 720 (1924)

    Article  ADS  Google Scholar 

  38. A F Zakharov, F De Paolis, G Ingrosso and A A Nucita, Astron. Astrophys. 442, 795 (2005)

    Article  ADS  Google Scholar 

  39. C W Misner and D H Sharp, Phys. Rev. 136, B571 (1964)

    Article  ADS  Google Scholar 

  40. H A Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  41. M K Mak and T Harko, Proc. R. Soc. London A 459, 393 (2003)

    Article  ADS  Google Scholar 

  42. K Dev and M Gleisser, Int. J. Mod. Phys. D 13, 1389 (2004)

    Article  ADS  Google Scholar 

  43. M Chaisi and S D Maharaj, Gen. Relativ. Gravit. 37, 1177 (2005)

    Article  ADS  Google Scholar 

  44. R Tikekar and V O Thomas, Pramana – J. Phys. 52, 237 (1999)

    Google Scholar 

  45. S D Maharaj and R Maartens, Gen. Relativ. Gravit. 21, 899 (1989)

    Article  ADS  Google Scholar 

  46. R Sharma, S Mukherjee and S D Maharaj, Gen. Relativ. Gravit. 33, 6 (2001)

    Article  Google Scholar 

  47. L Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  48. R Sharma, S Karmakar and S Mukherjee, Int. J. Mod. Phys. D 15, 3 (2006)

    Article  Google Scholar 

  49. B C Paul, P K Chattopadhyay and S Karmakar, Astrophys. Space Sci. 356, 327 (2015)

    Article  ADS  Google Scholar 

  50. S Karmakar, S Mukherjee, R Sharma and S D Maharaj, Pramana – J. Phys. 68, 6 (2007)

    Google Scholar 

  51. K B Goswami, A Saha and P K Chattopadhyay, Astrophys. Space Sci. 365, 141 (2020)

    Article  ADS  Google Scholar 

  52. R Sharma, N Dadhich, S Das and S D Maharaj, Eur. Phys. J. C 81, 79 (2021)

    Article  ADS  Google Scholar 

  53. Ya B Zeldovich and I D Novikov, Relativistic astrophysics, in: Stars and relativity (University of Chicago Press, Chicago, 1971) Vol. 1

  54. M L Rawls, J A Orosz, J E McClintock, M A P Torres, C D Bailyn and M M Buxton, Astrophys. J. 730, 25 (2011)

    Article  ADS  Google Scholar 

  55. F Özel, T Güver and D Psaltis, Astrophys. J. 693, 1775 (2009)

  56. P B Demorest, T Pennucci, S M Ransom, M S E Roberts and J W T Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  57. J Ponce de León, Gen. Relativ. Gravit. 19, 797 (1987)

  58. H Abreu, H Hernández and L A Núñez, Class. Quantum Gravit. 24, 4631 (2007)

    Article  ADS  Google Scholar 

  59. H Heintzmann and W Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  60. C E Rhoades and R Ruffini, Phys. Rev. Lett. 32, 324 (1974)

    Article  ADS  Google Scholar 

  61. P C C Freire, S M Ransom, S Bégin, I H Stairs, J W T Hessels, L H Frey and F Camilo, Astrophys. J. 675, 670 (2008)

    Article  ADS  Google Scholar 

  62. C G Böhmer and T Harko, Class. Quantum Gravit. 23, 6479 (2006)

    Article  ADS  Google Scholar 

  63. B V Ivanov, Phys. Rev. D 65, 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

KBG and BD are thankful to CSIR for providing the fellowship vide No. 09/1219(0004)/2019-EMR-I and 09/1219(0005)/2019 EMR-I, respectively. They are also thankful to the anonymous referee for important suggestions on our article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P K Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Goswami, K.B., Das, B. et al. Effect of charge on the maximum mass of the anisotropic strange quark star. Pramana - J Phys 97, 10 (2023). https://doi.org/10.1007/s12043-022-02477-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02477-x

Keywords

PACS Nos

Navigation