Skip to main content
Log in

Investigation of optimal energy deposition of the aluminium ion beam in pre-compressed DT fuel

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Fast ignition (FI) by the laser-accelerated ion beams is an advanced possible remedy to produce high energy in inertial confinement fusion. Low-divergence high-power beams can now be produced due to new technological advances in laser–plasma accelerators. Using the Deira-4 simulation code, conditions optimal for the ignition of deuterium–tritium (D-T) pellets by the aluminium heavy ion beam were investigated in this work. The results show that an aluminium ignitor beam with 1.4 GeV energy can provide hot-spot optimal ignition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. G A Mourou, C P Barty and M D Perry, Phys. Today 51, 1 (1998)

    Article  Google Scholar 

  2. I A Sidorov et al, Contrib. Plasma Phys. 51, 457 (2011)

    Article  Google Scholar 

  3. M Tabak et al, Phys. Plasmas 1, 1626 (1994)

    Article  Google Scholar 

  4. R E Kidder, Nucl. Fusion 16, 405 (1976)

    Article  Google Scholar 

  5. J Meyer-ter-Vehn, Plasma Phys. Control. Fusion 43, A113 (2001)

    Article  Google Scholar 

  6. J Meyer-ter-Vehn, Nucler. Fusion 22, 561 (1982)

    Article  Google Scholar 

  7. J J Honrubia and J Meyer-ter-Vehn, Plasma Phys. Control. Fusion 51, 014008 (2009)

    Article  Google Scholar 

  8. J S Green et al, Phys. Rev. Lett. 100, 015003 (2008)

    Article  Google Scholar 

  9. H Shiraga, S Fujioka, M Nakai and et al, High Energy Density Phys. 8, 227 (2012)

    Article  Google Scholar 

  10. R B Stephens et al, Phys. Rev. Lett. 91, 185001 (2003)

    Article  Google Scholar 

  11. L Willingale et al, Phys. Rev. Lett. 106, 105002 (2011)

    Article  Google Scholar 

  12. V Mironov et al, Plasma Phys. Control. Fusion 54, 095008 (2012)

    Article  Google Scholar 

  13. R A Snavely et al, Phys. Rev. Lett. 85, 2945 (2000)

    Article  Google Scholar 

  14. A Higginson et al, Springer Nature 9, 2041 (2018)

    Google Scholar 

  15. S C Wilks et al, Phys. Plasmas 8, 542 (2001)

    Article  Google Scholar 

  16. H Ruhl et al, Plasma Phys. Rep. 27, 363 (2001)

    Article  Google Scholar 

  17. L Torrisi, M Cutroneo and A Torrisi, Contrib. Plasma Phys, e201900076 (2019), https://doi.org/10.1002/ctpp.201900076.

  18. L Torrisi et al, Contrib. Plasma Phys. 59, e201800127 (2019)

    Article  Google Scholar 

  19. M Borghesi, Ion acceleration: TNSA and beyond (Springer International Publishing, 2019) p. 143

  20. M Ehret, TNSA-proton beam guidance with strong magnetic fields generated by coil targets (2016)

  21. Y Kitagawa et al, Phys. Rev. Lett. 114, 195002 (2015)

    Article  Google Scholar 

  22. M Roth et al, Phys. Rev. Lett. 86, 436 (2001)

    Article  Google Scholar 

  23. Jun Li et al, Springer Nature 9, 20045 (2019)

    Google Scholar 

  24. M Temporal and J J Honrubia, Phys. Plasmas 9, 3098 (2002)

    Article  Google Scholar 

  25. VY Bychenkov et al, Plasma Phys. Rep. 27, 1017 (2001)

    Article  Google Scholar 

  26. S Khatami and S Khoshbinfar, Chin. J. Phys. 66, 460 (2020)

    Article  Google Scholar 

  27. M L Shmatov, Phys. Conf. Ser. 112, 022061 (2008)

    Article  Google Scholar 

  28. D H H Hoffmann et al, Contrib. Plasma Phys. 50, 7 (2010)

    Article  Google Scholar 

  29. J Domański, J Badziak and M Marchwiany, Laser Part. Beams 36, 507 (2018)

    Article  Google Scholar 

  30. D X Liu et al, Plasma Phys. Control. Fusion 53, 035022 (2011)

    Article  Google Scholar 

  31. A Macchi, M Borghesi and M Passoni, Rev. Model Phys. 85, 750 (2013)

    Google Scholar 

  32. W J Ma et al, Phys. Rev. Lett. 122, 014803 (2019)

    Article  Google Scholar 

  33. X F Shen, B Qiao, H He and Y Xie, http://export.arxiv.org/pdf/1809.06007 (2018)

  34. T ZH Esirkepov et al, Phys. Rev. Lett. 9, 175003 (2002)

    Article  Google Scholar 

  35. J C Fernandez et al, Nucl. Fusion 54, 054006 (2014)

    Article  Google Scholar 

  36. S Steinke et al, Contrib. Plasma Phys. 51, 444 (2011)

    Article  Google Scholar 

  37. D Sangwan et al, Laser Part. Beams 9, 666 (2019)

    Google Scholar 

  38. J Domanski, J Badziak and S Jabłoński, J. Appl. Phys. 113, 173302 (2013)

    Article  Google Scholar 

  39. J J Honrubia and M Murakami, Phys. Plasmas 22, 012703 (2014)

    Article  Google Scholar 

  40. S Pfalzner, An introduction to inertial confinement fusion (CRC Press, Taylor & Francis Group, 2006)

  41. T Hamacher et al, Fusion Eng. Des. 6, 95 (2001)

    Article  Google Scholar 

  42. M Victoria, N Baluc and P Spätig, Nucl. Fusion 41, 1047 (2001)

    Article  Google Scholar 

  43. T C Simonen et al, Nucl. Fusion 53, 063002 (2013)

    Article  Google Scholar 

  44. M M Basko, DEIRA. A 1-D, 3-T Hydrodynamic Code for Simulating ICF Targets Driven by Fast Ion Beams, Version 4 (Institute for Theoretical and Experimental Physics, Moscow, 2001)

  45. M M Basko and J Sov, Plasma Phys. 10, 689 (1984)

    Google Scholar 

  46. M Mahdavi, T Koohrokhi and R Azadifar, Phys. Plasmas 19, 082707 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotodeheian, R., Mahdavi, M. Investigation of optimal energy deposition of the aluminium ion beam in pre-compressed DT fuel. Pramana - J Phys 96, 226 (2022). https://doi.org/10.1007/s12043-022-02461-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02461-5

Keywords

PACS Nos

Navigation