Skip to main content
Log in

Good optical limiting performance of platinum nanoparticles prepared by laser ablation in a water environment

  • Research paper
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper describes the nonlinear optical and structural properties of the platinum (Pt) colloidal nanoparticle solution in water. A nanosecond fibre laser (1064 nm) with a fluence of 61.1 J\(/\)cm2 was used to produce platinum nanoparticles (Pt NPs) in deionised water. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements were used to study the structural and morphological characteristics of the produced Pt NPs. The linear optical properties were examined by UV–visible spectrophotometry. The size distribution of NPs was determined using dynamic light scattering (DLS). Using the DLS data, the Mie scattering theory was employed to predict the plasmonic behaviour of Pt NPs. The Z-scan technique was used for measuring the nonlinear refractive index and absorption coefficients. It was found that the colloidal solution of Pt NPs in water exhibits negative nonlinear refraction and reverse saturable absorption (RSA) properties. The optical limiting threshold intensity of the Pt NPs was also determined. The optical limiting threshold power was determined to be about \({30} \pm {2}\) mW. The good optical limiting performance of the Pt NPs can lead to their use in protecting human eyes and delicate optical sensors from unintended exposure to high-power laser radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. T D Nguyen, Q D Nguyen and T T Nguyen, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 035011 (2014)

    Article  ADS  Google Scholar 

  2. E Kizilaslan, S Aktaş and M K Şeşen, Turkish J. Eng. Environ. 33, 83 (2010)

    Google Scholar 

  3. A L Stepanov, A N Golubev, S I Nikitin and Y N Osin, Rev. Adv. Mater. Sci. 38, 160 (2014)

    Google Scholar 

  4. G Ramos-Sánchez, N Dang and P B Balbuena, Multi-scale simulation study of Pt-alloys degradation for fuel cells applications (Springer, 2016)

    Book  Google Scholar 

  5. E Gharibshahi and E Saion, Int. J. Mol. Sci. 13, 14723 (2012)

    Article  Google Scholar 

  6. D T Nguyen, Q D Nguyen and T T Nguyen, VNU J. Sci. Math. Phys. 30 (2014)

  7. A Pitto-Barry, L M A Perdigao, M Walker, J Lawrence, G Costantini, P J Sadler and N P E Barry, Dalton Trans. 44, 20308 (2015)

    Article  Google Scholar 

  8. N Samadi, S V Hosseini, A Fazeli and M R Fazeli, DARU J. Pharm. Sci. 18, 168 (2010)

    Google Scholar 

  9. D Zymelka, B Matveev, S Aleksandrov, G Sotnikova, G Gavrilov and M Saadaoui, Flex. Print. Electron. 2, 045006 (2017)

    Article  Google Scholar 

  10. A Pal and T Pal, J. Raman Spectrosc. 30, 199 (1999)

    Article  ADS  Google Scholar 

  11. J V Rojas and C H Castano, Radiat. Phys. Chem. 81, 16 (2012)

    Article  ADS  Google Scholar 

  12. J Zhu, S Liu, O Palchik, Y Koltypin and A Gedanken, Langmuir 16, 6396 (2000)

    Article  Google Scholar 

  13. F Mafuné, J-y Kohno, Y Takeda, T Kondow and H Sawabe, J. Phys. Chem. 104, 8333 (2000)

    Article  Google Scholar 

  14. M Cueto, M Sanz, M Oujja, F Gámez, B Martínez-Haya and M Castillejo, J. Phys. Chem. C 115, 22217 (2011)

    Article  Google Scholar 

  15. D Zhang, J Liu, P Li, Z Tian and C Liang, ChemNanoMat. 3, 512 (2017)

    Article  Google Scholar 

  16. A De Giacomo, M Dell'Aglio, A Santagata, R Gaudiuso, O De Pascale, P Wagener, G C Messina, G Compagnini and S Barcikowski, Phys. Chem. Chem. Phys. 15, 3083 (2013)

    Article  Google Scholar 

  17. H Zeng, X W Du, S C Singh, S A Kulinich, S Yang, J He and W Cai, Adv. Funct. Mater. 22, 1333 (2012)

    Article  Google Scholar 

  18. G W Yang, Prog. Mater. Sci. 52, 648 (2007)

    Article  Google Scholar 

  19. V Amendola and M Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  20. N G Semaltianos, Crit. Rev. Solid State Mater. Sci. 35, 105 (2010)

    Article  ADS  Google Scholar 

  21. J-P Sylvestre, S Poulin, A V Kabashin, E Sacher, M Meunier and J H Luong, J. Phys. Chem. 108, 16864 (2004)

    Article  Google Scholar 

  22. A De Bonis, A Santagata, A Galasso, A Laurita and R Teghil, J. Colloid Interface Sci. 489, 76 (2017)

    Article  ADS  Google Scholar 

  23. H Zhang, C Liang, J Liu, Z Tian and G Shao, Carbon 55, 108 (2013)

    Article  Google Scholar 

  24. B Gökce, V Amendola and S Barcikowski, ChemPhysChem. 18, 983 (2017)

    Article  Google Scholar 

  25. L Torrisi, M Cutroneo, L Silipigni, F Barreca, B Fazio, N Restuccia and L Kovacik, Philos. Mag. 98, 2205 (2018)

    Article  ADS  Google Scholar 

  26. W T Nichols, T Sasaki and N Koshizaki, J. Appl. Phys. 100, 114911 (2006)

    Article  ADS  Google Scholar 

  27. B F Mohazzab, B Jaleh, O Kakuee and A Fattah-Alhosseini, Appl. Surf. Sci. 478, 623 (2019)

    Article  ADS  Google Scholar 

  28. A Nasri, B Jaleh, Z Nezafat, M Nasrollahzadeh, S Azizian, H W Jang and M Shokouhimehr, Ceram. Int. 47, 3565 (2021)

    Article  Google Scholar 

  29. B F Mohazzab, B Jaleh, Z Issaabadi, M Nasrollahzadeh and R S Varma, Green Chem. 21, 3319 (2019)

    Article  Google Scholar 

  30. Y Zhang and Y Wang. RSC Adv. 7, 45129 (2017)

    Article  ADS  Google Scholar 

  31. A Prakash, B P Pathrose, P Radhakrishnan and A Mujeeb, Opt. Laser Technol. 130, 106338 (2020)

    Article  Google Scholar 

  32. A Omidvar, M R RashidianVaziri and B Jaleh, Physica E: Low-Dimens. Syst. Nanostruct. 103, 239 (2018)

    Article  ADS  Google Scholar 

  33. M Eslamifara and N Mansour, Int. J. Opt. Photon. 6, 49 (2012)

    Google Scholar 

  34. F Z Henari and P S Patil, OPJ. 4, 182 (2014)

    Article  ADS  Google Scholar 

  35. C B De Araújo, A S Gomes and G Boudebs, Rep. Prog. Phys. 79, 036401 (2016)

    Article  ADS  Google Scholar 

  36. A M Beigzadeh and M R R Vaziri, Nucl. Instrum. Methods 991, 165022 (2021)

    Article  Google Scholar 

  37. R Del Coso and J Solis, J. Opt. Soc. Am. 21, 640 (2004)

    Article  Google Scholar 

  38. M R R Vaziri, A Omidvar, B Jaleh and N P Shabestari, Opt. Mater. 64, 413 (2017)

    Article  ADS  Google Scholar 

  39. R A Ganeev, R I Tugushev and T Usmanov, Appl. Phys. B 94, 647 (2009)

    Article  ADS  Google Scholar 

  40. B Can-Uc, R Rangel-Rojo, A Peña-Ramírez, C B de Araújo, H Baltar, A Crespo-Sosa, M Garcia-Betancourt and A Oliver, Opt. Express 24, 9955 (2016)

    Article  ADS  Google Scholar 

  41. G Fan, S Ren, S Qu, Z Guo, Q Wang, Y Wang and R Gao, Opt. Commun. 295, 219 (2013)

    Article  ADS  Google Scholar 

  42. Y Gao, X Zhang, Y Li, H Liu, Y Wang, Q Chang, W Jiao and Y Song, Opt. Commun. 251, 429 ( 2005)

    Article  ADS  Google Scholar 

  43. A Chehrghani and M J Torkamany, Laser Phys. 24, 015901 (2013)

    Article  ADS  Google Scholar 

  44. M H Mezher, W Y Chong and R Zakaria, RSC Adv. 6, 104624 (2016)

    Article  ADS  Google Scholar 

  45. M Eslamifar, Int. Res. J. Appl. Basic. Sci. 5, 1423 (2013)

    Google Scholar 

  46. M R R Vaziri, Chin. Phys. B 24, 114206 (2015)

    Article  ADS  Google Scholar 

  47. M R R Vaziri, Opt. Commun. 357, 200 (2015)

    Article  ADS  Google Scholar 

  48. P Fakhri, M R R Vaziri, B Jaleh and N P Shabestari, J. Opt. 18, 015502 (2015)

    Article  ADS  Google Scholar 

  49. M R R Vaziri, Laser Phys. 23, 105401 (2013)

    Article  ADS  Google Scholar 

  50. M R R Vaziri, Appl. Opt. 52, 4843 (2013)

    Article  ADS  Google Scholar 

  51. H L Saadon. Opt. Quant. Electron. 48, 40 (2016)

    Article  Google Scholar 

  52. T C S Girisun, S Dhanuskodi and G Vinitha, Mater. Chem. Phys. 129, 9 (2011).

    Article  Google Scholar 

  53. C F Bohren and D R Huffman. Absorption and scattering of light by small particles (John Wiley & Sons, 2008)

    Google Scholar 

  54. A Omidvar, M R RashidianVaziri, B Jaleh, N P Shabestari and M Noroozi, Chin. Phys. B 25, 118102 (2016)

    Article  ADS  Google Scholar 

  55. S Moniri, M R Hantehzadeh, M Ghoranneviss and M A Asadabad, Appl. Phys. A 123, 1 (2017)

    Article  Google Scholar 

  56. M R R Vaziri and F Hajiesmaeilbaigi, Optik 126, 1348 (2015)

    Article  ADS  Google Scholar 

  57. S Adachi, Handbook on optical constants of metals, In tables and figures (World Scientific, 2012)

    Book  Google Scholar 

  58. R D Averitt, D Sarkar and N J Halas, Phys. Rev. Lett. 78, 4217 (1997)

    Article  ADS  Google Scholar 

  59. M Zeinali, B Jaleh, M R R Vaziri and A Omidvar, Quantum Electron. 49, 951 (2019)

    Article  ADS  Google Scholar 

  60. C H Kwak, Y L Lee and S G Kim, J. Opt. Soc. Am. 16, 600 (1999)

    Article  ADS  Google Scholar 

  61. A Ajami, W Husinsky, R Liska and N Pucher, J. Opt. Soc. Am. B 27, 2290 (2010)

    Article  ADS  Google Scholar 

  62. M Nyk, J Szeremeta, D Wawrzynczyk and M Samoc, J. Phys. Chem. C 118, 17914 (2014)

    Article  Google Scholar 

  63. X Fan, W Zheng and D J Singh, Light Sci. Appl. 3, 179 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Babak Jaleh or Mohammad Reza Rashidian Vaziri.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, M., Jaleh, B., Rashidian Vaziri, M.R. et al. Good optical limiting performance of platinum nanoparticles prepared by laser ablation in a water environment. Pramana - J Phys 96, 166 (2022). https://doi.org/10.1007/s12043-022-02421-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02421-z

Keywords

PACS Nos

Navigation