Skip to main content
Log in

Electromagnetic design of 325 MHz superconducting single-spoke resonators for Indian Facility for Spallation Research

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We present an electromagnetic design of 325 MHz superconducting single-spoke resonators (SSRs) to accelerate the \(\hbox {H}^{-}\) ions from 3 to \(\sim \!\!160\) MeV for the proposed Indian Facility for Spallation Research project. The geometrical parameters of SSRs have been optimised to maximise the achievable acceleration gradient, and to minimise the multipacting growth rate, keeping a reasonably low value of heat dissipation on the cavity surface. For the geometrical optimisation of SSR cavities, we followed a one-dimensional procedure, where we vary and fix the geometrical parameters one by one in a sequential manner. We explain the behaviour of various RF parameters of the SSR with respect to its geometrical parameters, based on which the optimum value of each of the geometrical parameters has been chosen. For the optimised geometry of SSRs, we performed the higher-order mode (HOM) analysis and estimated the transverse and longitudinal kicks imparted to the beam by HOMs. The effect of azimuthal asymmetry of the electromagnetic field is also analysed and presented for the adopted design. A holistic design approach is described in the paper that addresses the interlinked optimisation requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A Sharma et al, Reference physics design for 1 GeV injector Linac and accumulator ring for Indian Spallation Neutron Source, Internal Report No. RRCAT/2016-11

  2. R Kumar et al, Rev. Sci. Instrum. 88, 083302 (2017)

    Article  ADS  Google Scholar 

  3. R Gaur and V Kumar, EPJ Nucl. Sci. Technol. 4, 9 (2018)

    Article  ADS  Google Scholar 

  4. S Kim, SNS superconducting Linac operational experience and upgrade path, XXIV Linear Accelerator Conference (LINAC2008) (2008)

  5. M Ball et al, The PIP-II conceptual design report, v0.03 (2018)

  6. M H Awida et al, IEEE Trans. Nucl. Sci.  64, 2450 (2017)

    Article  ADS  Google Scholar 

  7. L Ristori et al, Design of SSR1 spoke resonators for PXIE, 3rd International Conference on Particle Accelerator (IPAC2012) (2012)

  8. P N Ostroumov et al, Development of a half-wave resonator for Project-X, 3rd International Conference on Particle Accelerator (IPAC2012) (2012)

  9. I Gonin et al, Single spoke cavity for low-energy part of CW Linac of project-X, 1st International Particle Accelerator Conference IPAC10 (2010)

  10. C S Hopper and J R Delayen, Phys. Rev. ST Accel. Beams 16, 102001 (2013)

    Article  ADS  Google Scholar 

  11. G Lanfranco et al, Production of 325 MHz single spoke resonators at FNAL, Particle Accelerator Conference (PAC07) (2007)

  12. F Yan et al, Phys. Rev. ST Accel. Beams 18, 054201 (2015)

    Article  ADS  Google Scholar 

  13. L Han et al, Chin. Phys. C 36, 761 (2012)

    Article  ADS  Google Scholar 

  14. L Han et al, Design of a 325MHz\(\beta =\)0.12 superconducting single spoke cavity for China-ADS, arXiv:1310.1445

  15. Y He et al, SRF cavities for ADS project in China, 16th International Conference on RF Superconductivity SRF2013 (2013)

  16. P Y Hua et al, Chin. Phys. C 38, 117005 (2014)

    Article  Google Scholar 

  17. R Garoby et al, Phys. Scr. 93, 014001 (2018)

    Article  ADS  Google Scholar 

  18. S Henderson et al, Nucl. Instrum. Methods Phys. Res. A 763, 610 (2014)

    Article  ADS  Google Scholar 

  19. M K Pal et al, Geometry optimisation of 325 MHz half wave and single spoke resonators, Indian Particle Accelerator Conference (InPAC2013) (2013)

  20. R Prakash et al, Beam dynamics studies on 325 MHz DTL using GenDTL and Tracewin, Indian Particle Accelerator Conference (InPAC2018) (2018)

  21. A R Jana and V Kumar, Nucl. Instrum. Methods Phys. Res. A 942, 162299 (2019)

    Article  Google Scholar 

  22. A R Jana et al, IEEE Trans. Appl. Supercond. 23, 3500816 (2013)

    Article  ADS  Google Scholar 

  23. A R Jana and V Kumar, IEEE Trans. Appl. Supercond. 24, 3500216 (2014)

    Article  Google Scholar 

  24. CST Studio Suite 2014, www.cst.com

  25. H Padamsee et al, RF superconductivity for accelerators, 2nd edn (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008)

    Google Scholar 

  26. S Belomestnykh and V Shemelin, High-\(\beta \) cavity designA tutorial, 12th International Workshop on RF Superconductivity SRF 060424-03 (2005)

  27. P Berrutti et al, Multipacting simulation of SSR2 cavity at FNAL, Particle Accelerator Conference PAC2013 (2013)

  28. B Xu et al, Low beta spoke cavity multipacting analysis, arXiv:1303.6731

  29. M A Furman and M T F Pivi, Phys. Rev. ST Accel. Beams 5, 124404 (2002)

    Article  ADS  Google Scholar 

  30. F Hamme et al, Simulation of secondary electron emission with CST Particle Studio, 9th International Computational Accelerator Physics Conference (ICAP2006), TUAPMP04 (2006)

  31. E Somersalo et al, Part Accel. 59, 107 (1998)

    Google Scholar 

  32. Z Zheng et al, Multipacting suppression modeling for half wave resonator and RF coupler, 26th Linear Accelerator Conference (LINAC2012) (2012)

  33. T P Wangler, RF Linear accelerators, 2nd edn (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008)

  34. P Berrutti et al, Multipole effects study for Project X front end cavities, 3rd International Conference on Particle Accelerator (IPAC2012) (2012)

  35. J Ostiguy, Residual focusing asymmetry in SC spoke cavities, 2nd International Accelerator Conference (IPAC2011) (2011)

  36. F Yan et al, ADS Injector-I frequency choice at IHEP, 6th International Accelerator Conference (IPAC2015) (2015)

  37. L Ristori et al, Design of single spoke resonators for Project-X, 2nd International Accelerator Conference (IPAC2011) (2011)

  38. L Ristori et al, Design, fabrication and testing of single spoke resonators at Fermilab, 14th International Conference of RF Superconductivity (SRF2009) (2009)

  39. M Sawamura et al, Design optimisation of spoke cavity of energy-recovery Linac for non-destructive assay research, 15th International Conference of RF Superconductivity (SRF2011) (2011)

  40. G Romanov et al, Simulation of multipacting in SC low beta cavities at FNAL, 6th International Particle Accelerator Conference (IPAC2015) (2015)

  41. Z Yao et al, Balloon variant of single spoke resonator, 17th International Conference of RF Superconductivity (SRF2015) (2015)

  42. J Tamura et al, RF Design of the prototype spoke cavity for the JAEA-ADS Linac, 3rd J-PARC Symposium (J-PARC2019) 011049 (2021)

  43. M K Pal et al, Multipacting studies of 325 MHz superconducting single spoke resonators, Internal Report No. RRCAT/2015-08

  44. T Khabiboulline et al, Experiments on HOM spectrum manipulation in a 1.3 GHz ILC SC cavity, Particle Accelerator Conference PAC2011 (2011)

  45. R Prakash et al, Analysis of generation and effect of higher order modes in superconducting cavities, Indian Particle Accelerator Conference (InPAC2018) (2018)

  46. M Awida et al, SSR1 HOM analysis and measurements, Fermilab-conf-12-153-TD

  47. M K Pal et al, Field perturbation due to azimuthal asymmetry in SSR cavities, Indian Particle Accelerator Conference (InPAC2018) (2018)

  48. P Berrutti et al, Transverse field perturbation for PIP-II SRF cavities, 6th International Accelerator Conference (IPAC2015) (2015)

  49. http://irfu.cea.fr/Sacm/logiciels/index3.php

  50. B Mustapha et al, A ring-shaped center conductor geometry for a half-wave resonator, 3rd International Accelerator Conference (IPAC2012) (2012)

  51. P Berrutti, et al, Effects of the RF field asymmetry in SC cavities of the Project X, FERMILAB-CONF-12-167-TD

  52. P Berrutti et al, Single spoke resonator inner electrode optimisation driven by reduction of multipoles, Particle Accelerator Conference (PAC2013) (2013)

  53. J R Delayen, Applications of spoke cavities, 25th International Linear Accelerator Conference (LINAC2010) (2010)

  54. K W Shepard et al, Phys. Rev. ST Accel. Beams 6, 080101 (2003)

    Article  ADS  Google Scholar 

  55. M K Pal and R Gaur, Physics design study of multispoke resonators and their comparison with single spoke resonators, Indian Particle Accelerator Conference (InPAC2019) (2019)

  56. J R Delayen, Superconducting cavities for ion and proton Linacs, https://misportal.jlab.org/ul/publications/downloadFile.cfm?hyperlink=ACF2D7F.pdf

  57. P N Ostroumov and K W Shepard, Phys. Rev. ST Accel. Beams 4, 110101 (2001)

    Article  ADS  Google Scholar 

  58. M A Fraser et al, Phys. Rev. ST Accel. Beams 14, 020102 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Gaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M.K., Gaur, R. & Kumar, V. Electromagnetic design of 325 MHz superconducting single-spoke resonators for Indian Facility for Spallation Research. Pramana - J Phys 96, 69 (2022). https://doi.org/10.1007/s12043-022-02311-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02311-4

Keywords

PACS Nos

Navigation