Skip to main content
Log in

Quantum Langevin dynamics of a charged particle in a magnetic field: Response function, position–velocity and velocity autocorrelation functions

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We use the quantum Langevin equation as a starting point to study the response function, the position–velocity correlation function and the velocity autocorrelation function of a charged quantum Brownian particle in the presence of a magnetic field and linearly coupled to a heat bath via position coordinate. We study two bath models – the Ohmic bath model and the Drude bath model and make a detailed comparison in various time–temperature regimes. For both bath models, there is a competition between the cyclotron frequency and the viscous damping rate giving rise to a transition from an oscillatory to a monotonic behaviour as the damping rate is increased. In the zero point fluctuation dominated low-temperature regime, non-trivial noise correlations lead to some interesting features in this transition. We study the role of the memory time-scale which comes into play in the Drude model and study the effect of this additional time-scale. We discuss the experimental implications of our analysis in the context of experiments in cold ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R Balescu, Equilibrium and non-equilibrium statistical mechanics (John Wiley & Sons, 1975)

  2. G F Mazenko, Non-equilibrium statistical mechanics (Wiley-VCH Verlag GmbH & Co. KGaA, 2006)

  3. A R Kolovsky, A V Ponomarev and H J Korsch, Phys. Rev. A 66, 053405 (2002)

    Article  ADS  Google Scholar 

  4. M B Dahan, E Peik, J Reichel, Y Castin and C Salomon, Phys. Rev. Lett. 76, 4508 (1996)

    Article  ADS  Google Scholar 

  5. A Einstein, Ann. Phys. 322(8), 549 (1905)

    Article  Google Scholar 

  6. N Francis, C Paraan, M P Solon and J P Esguerra, Phys. Rev. E 77, 022101 (2008)

    ADS  Google Scholar 

  7. S Dattagupta and J Singh, PramanaJ. Phys. 47, 211 (1996)

    Article  ADS  Google Scholar 

  8. X L Li, G W Ford and R F O’Connell, Phys. Rev. A 41, 5287 (1990)

  9. X L Li, G W Ford and R F O’Connell, Phys. Rev. A 42, 4519 (1990)

    Article  ADS  Google Scholar 

  10. U Weiss, Quantum dissipative systems, 4th edition (2012)

  11. G W Ford, M Kac and P Mazur, J. Math. Phys. 6(4), 504 (1965)

    Article  ADS  Google Scholar 

  12. U Satpathi and S Sinha, Phys. A Stat. Mech. Appl. 506, 692 (2018)

    Article  Google Scholar 

  13. G W Ford, J T Lewis and R F O’Connell, Phys. Rev. A 37, 4419 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. P Hänggi and G L Ingold, Chaos 15(2), 026105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. C F Bohren, Eur. J. Phys. 31(3), 573 (2010)

    Article  MathSciNet  Google Scholar 

  16. G W Ford and R F O’Connell, Phy. Rev. D 64(10), 105020 (2001)

    Article  ADS  Google Scholar 

  17. A Das, A Dhar, I Santra, U Satpathi and S Sinha, Phys. Rev. E 102, 062130 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. E Barkai, E Aghion and D A Kessler, Phys. Rev. X 4, 021036 (2014)

    Google Scholar 

  19. H Katori, S Schlipf and H Walther, Phys. Rev. Lett. 79, 2221 (1997)

    Article  ADS  Google Scholar 

  20. Y Sagi, M Brook, I Almog and N Davidson, Phys. Rev. Lett. 108, 093002 (2012)

    Article  ADS  Google Scholar 

  21. M Grimm, T Franosch and S Jeney, Phys. Rev. E 86, 021912 (2012)

    Article  ADS  Google Scholar 

  22. G Afek, J Coslovsky, A Courvoisier, O Livneh and N Davidson, Phys. Rev. Lett. 119, 060602 (2017)

    Article  ADS  Google Scholar 

  23. S Bhar, M Swar, U Satpathi, S Sinha, R D Sorkin, S Chaudhuri and S Roy, Measurements and analysis of response function of cold atoms in optical molasses, arXiv: 2101.09118 (2021)

  24. G L Paul and P N Pusey, J. Phys. A Math. Gen. 14(12), 3301 (1981)

    Article  ADS  Google Scholar 

  25. B U Felderhof, J. Phys. Chem. B 109(45), 21406 (2005)

    Article  Google Scholar 

  26. C Aslangul, N Pottier and D Saint-James, J. Stat. Phys. 40, 167 (1985)

    Article  ADS  Google Scholar 

  27. N Pottier and A Mauger, Phys. A Stat. Mech. Appl. 282(1), 77 (2000)

    Article  Google Scholar 

  28. R Jung, G L Ingold and H Grabert, Phys. Rev. A 32, 2510 (1985)

    Article  ADS  Google Scholar 

  29. S Gupta and M Bandyopadhyay, Phys. Rev. E 84, 041133 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, S., Satpathi, U. & Sinha, S. Quantum Langevin dynamics of a charged particle in a magnetic field: Response function, position–velocity and velocity autocorrelation functions. Pramana - J Phys 96, 53 (2022). https://doi.org/10.1007/s12043-022-02295-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-022-02295-1

Keywords

PACS Nos

Navigation