Skip to main content
Log in

Dipolar interaction and sample shape effects on the hysteresis properties of 2d array of magnetic nanoparticles

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We study the ground-state and magnetic hysteresis properties of 2d arrays (\(L^{}_x\times L^{}_y\)) of dipolar interacting magnetic nanoparticles (MNPs) by performing micromagnetic simulations. Our primary interest is to understand the effect of sample shape, \(\Theta \), the ratio of the dipolar strength to the anisotropy strength and the direction of the applied field \(\vec {H} = H_{0}{\hat{e}}^{}_H\) on the ground state and the magnetic hysteresis in an array of MNPs. To study the effect of the shape of the sample, we have varied the aspect ratio \(A^{}_r=L^{}_y/L^{}_x\), which in turn, is found to induce shape anisotropy in the system. Our main observations are: (a) When the dipolar interaction is strong \((\Theta >1)\), the ground-state morphology has an in-plane ordering of magnetic moments, (b) the ground-state morphology has randomly oriented magnetic moments that are robust regarding system sizes and \(A^{}_r\) for weakly interacting MNPs (\(\Theta <1\)), (c) micromagnetic simulations suggest that the dipolar interaction decreases the coercive field \(H^{}_c\), (d) the remanence magnetisation \(M^{}_r\) is found to be strongly dependent not only on the strength of dipolar interaction but also on the shape of the sample and (e) due to the anisotropic nature of dipolar interaction, a strong shape anisotropy effect is observed when the field is applied along the long axis of the sample. In such a case, the dipolar interaction induces an effective ferromagnetic coupling when the aspect ratio is enormous. These results are of vital importance in high-density recording systems, magneto-impedance sensors, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L Wu, A Mendoza-Garcia, Q Li and S Sun, Chem. Rev. 116(18), 10473 (2016)

    Article  Google Scholar 

  2. K Ulbrich, K Hola, V Subr, A Bakandritsos, J Tucek and R Zboril, Chem. Rev. 116(9), 5338 (2016)

    Article  Google Scholar 

  3. A Hervault and N T K Thanh, Nanoscale 6(20), 11553 (2014)

    Article  ADS  Google Scholar 

  4. R Bustamante, A Millán, R Piñol, F Palacio, J Carrey, M Respaud, R Fernandez-Pacheco and N J O Silva, Phys. Rev. B 88(18), 184406 (2013)

    Article  ADS  Google Scholar 

  5. C A Schütz, L Juillerat-Jeanneret, H Mueller, I Lynch and M Riediker, Nanomedicine 8(3), 449 (2013)

    Article  Google Scholar 

  6. J L Déjardin, A Franco, F Vernay and H Kachkachi, Phys. Rev. B 97(22), 224407 (2018)

    Article  ADS  Google Scholar 

  7. P Capiod, L Bardotti, A Tamion, O Boisron, C Albin, V Dupuis, G Renaud, P Ohresser and F Tournus, Phys. Rev. Lett. 122(10), 106802 (2019)

    Article  ADS  Google Scholar 

  8. V F Puntes and K M Krishnan, IEEE Trans. Mag37(4), 2210 (2001)

    Article  ADS  Google Scholar 

  9. J Jordanovic, M Beleggia, J Schiøtz and C Frandsen, J. Appl. Phys. 118(4), 043901 (2015)

    Article  ADS  Google Scholar 

  10. Z Zhong, B Gates, Y Xia and D Qin, Langmuir 16(26), 10369 (2000)

    Article  Google Scholar 

  11. R Cowburn, A Adeyeye and M Welland, New J. Phys. 1(1), 16 (1999)

    Article  ADS  Google Scholar 

  12. M Anand, J. Magn. Magn. Mater. 522, 167538 (2021)

    Article  Google Scholar 

  13. M Pardavi-Horvath, J. Magn. Magn. Mater. 177, 213 (1998)

    Article  ADS  Google Scholar 

  14. A Mohtasebzadeh, L Ye and T Crawford, Int. J. Mol. Sci. 16(8), 19769 (2015)

    Article  Google Scholar 

  15. D Xue and Z Yan, J. Appl. Phys. 100(10), 103906 (2006)

    Article  ADS  Google Scholar 

  16. U Löw, V Emery, K Fabricius and S Kivelson, Phys. Rev. Lett. 72(12), 1918 (1994)

    Article  ADS  Google Scholar 

  17. K De’Bell, A MacIsaac, I Booth and J Whitehead, Phys. Rev. B 55(22), 15108 (1997)

  18. E Edlund and M N Jacobi, Phys. Rev. Lett105(13), 137203 (2010)

    Article  ADS  Google Scholar 

  19. M Anand, V Banerjee and J Carrey, Phys. Rev. B 99(2), 024402 (2019)

    Article  ADS  Google Scholar 

  20. A P Alivisatos, Science 271(5251), 933 (1996)

    Article  ADS  Google Scholar 

  21. C Collier, R Saykally, J Shiang and S Henrichs, J. Health Sci. 277(5334), 1978 (1997)

    Google Scholar 

  22. D Kechrakos and K Trohidou, Phys. Rev. B 71(5), 054416 (2005)

    Article  ADS  Google Scholar 

  23. N Usov, O Serebryakova and V Tarasov, Nanoscale Res. Lett. 12(1), 489 (2017)

    Article  ADS  Google Scholar 

  24. L C Branquinho, M S Carrião, A S Costa, N Zufelato, M H Sousa, R Miotto, R Ivkov and A F Bakuzis, Sci. Rep. 3, 2887 (2013)

    Article  ADS  Google Scholar 

  25. M Anand, J. Appl. Phys. 128(2), 023903 (2020)

    Article  ADS  Google Scholar 

  26. Y Li, T Wang, H Liu, f Dai, X Yu and G Liu, J. Nanomater. 16(1), 331 (2015)

  27. B Yang and Y Zhao, J. Appl. Phys. 110(10), 103908 (2011)

    Article  ADS  Google Scholar 

  28. M Morales-Meza, P P Horley, A Sukhov and J Berakdar, The Eur. Phys. J. B 87(8), 186 (2014)

    Article  ADS  Google Scholar 

  29. F Chinni, F Spizzo, F Montoncello, V Mattarello, C Maurizio, G Mattei and L D Bianco, Materials 10(7), 717 (2017)

    Article  ADS  Google Scholar 

  30. B Faure et al, Nanoscale 5(3), 953 (2013)

    Article  ADS  Google Scholar 

  31. R Moskowitz and E Della Torre, IEEE Trans. Magn. 2(4), 739 (1966)

    Article  ADS  Google Scholar 

  32. G Held, G Grinstein, H Doyle, S Sun and C Murray, Phys. Rev. B 64(1), 012408 (2001)

    Article  ADS  Google Scholar 

  33. D Kechrakos and K Trohidou, J. Nanosci. Nanotechnol. 8(6), 2929 (2008)

    Article  Google Scholar 

  34. M J Donahue and D G Porter, Technical Report (National Institute of Standards and Technology, Gaithersburg, MD, 1999) vol. 29, p. 53

  35. M Anand, J Carrey and V Banerjee, Phys. Rev. B 94(9), 094425 (2016)

    Article  ADS  Google Scholar 

  36. M Anand, J Carrey and V Banerjee, J. Magn. Magn. Mater. 454, 23 (2018)

    Article  ADS  Google Scholar 

  37. S Bedanta and W Kleemann, J. Phys. D 42(1), 013001 (2008)

    Article  ADS  Google Scholar 

  38. C Haase and U Nowak, Phys. Rev. B 85(4), 045435 (2012)

    Article  ADS  Google Scholar 

  39. M Schabes and A Aharoni, IEEE Trans. Magn. 23(6), 3882 (1987)

    Article  ADS  Google Scholar 

  40. V Russier, J. Appl. Phys. 89(2), 1287 (2001)

    Article  ADS  Google Scholar 

  41. C C Dantas and L A de Andrade, Phys. Rev. B 78(2), 024441 (2008)

    Article  ADS  Google Scholar 

  42. J Carrey, B Mehdaoui and M Respaud, J. Appl. Phys. 109(8), 083921 (2011)

    Article  ADS  Google Scholar 

  43. A Bailly-Reyre and H T Diep, J. Magn. Magn. Mater. 528, 167813 (2021)

    Article  Google Scholar 

  44. M Anand, arXiv:2104.02961 (2021)

  45. E C Stoner and E Wohlfarth, Philos. Trans. R. Soc. London A Math. Phys. Sci. 240(826), 599 (1948)

    Article  ADS  Google Scholar 

  46. G Wysin, Demagnetisation fields, available on https://www.phys.ksu.edu/personal/wysin/notes/demag.pdf (2012)

  47. A García-Arribas, E Fernández, A V Svalov, G V Kurlyandskaya, A Barrainkua, D Navas and J M Barandiaran, Eur. Phys. J. B 86(4), 136 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Most of the numerical simulations presented in this work have been carried out in the Department of Physics, Indian Institute of Technology (IIT) Delhi. The author is grateful to Prof Varsha Banerjee for providing the computational facility at IIT Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Anand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, M. Dipolar interaction and sample shape effects on the hysteresis properties of 2d array of magnetic nanoparticles. Pramana - J Phys 95, 181 (2021). https://doi.org/10.1007/s12043-021-02222-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02222-w

Keywords

PACS Nos

Navigation