Skip to main content
Log in

Cluster pre-formation probabilities and decay half-lives for trans-lead nuclei using modified generalised liquid drop model (MGLDM)

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Cluster decay half-lives of trans-lead nuclei emitting clusters like C, N, O, F, Ne, Mg and Si are studied by incorporating various cluster pre-formation probabilities to the modified generalised liquid drop model (MGLDM). MGLDM is a method in which generalised liquid drop model (GLDM) is modified using proximity 77 potential. In this approach, we make the assumption that the cluster is pre-born inside the parent nuclei and the pre-formation factor that depends on Q value, size of the cluster and product of atomic number of the cluster and the daughter nuclei are formulated and added to MGLDM. Calculated half-lives using three formulae are cross checked with experimentally detected values from various isotopes of Fr, Ra, Ac, Th, U, Pa, Np, Pu and Am parent nuclei and the results match exactly. Standard deviations of logarithmic half-lives using pre-formation factors which depend on Q values, cluster size and product of atomic number of the cluster and the daughter nuclei, are 1.08, 0.995 and 1.07 respectively. Hence, we formulate a pre-formation factor that depends on all the three parameters together in an equation and the standard deviation is found to be 0.885. Again, the four formulae proved its applicability in the case of alpha decay from the parent nuclei of atomic numbers 85–102.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A Sandulescu, D N Poenaru and W Greiner, Sov. J. Part. Nucl. 11, 528 (1980)

    Google Scholar 

  2. H J Rose and G A Jones, Nature 307, 245 (1984)

    Article  ADS  Google Scholar 

  3. D V Aleksandrov, A F Belyatskii, Y A Glukhov, E Y Nikolskii, B G Novatskii, A A Ogloblin and D N Stepnov, JETP Lett. 40, 909 (1984)

    ADS  Google Scholar 

  4. R K Gupta and W Greiner, Int. J. Mod. Phys. E 3, 335 (1994)

    Article  ADS  Google Scholar 

  5. Y S Zamyatnin, V L Mikheev, S P Tret’yakova, V I Furman, S G Kadmenskii and Y M Chuvil’skii, Sov. J. Part. Nucl. 21, 231 (1990)

    Google Scholar 

  6. P B Price, Annu. Rev. Nucl. Part. Sci. 39, 19 (1989)

    Article  ADS  Google Scholar 

  7. E Hourani, M Hussonnois and D N Poenaru, Ann. Phys. (Paris) 14, 311 (1989)

    ADS  Google Scholar 

  8. S S Malik, S Singh, R K Puri, S Kumar and R K Gupta, Pramana – J. Phys. 32, 419 (1989)

    Article  ADS  Google Scholar 

  9. D N Poenaru, W Greiner, M Ivascu and A Sandulescu, Phys. Rev. C 32, 2198 (1985)

    Article  ADS  Google Scholar 

  10. S W Barwick, P B Price and J D Stevenson, Phys. Rev. C 31, 1984 (1985)

    Article  ADS  Google Scholar 

  11. P B Price and K J Moody, Phys. Rev. C 46, 1939 (1992)

    Article  ADS  Google Scholar 

  12. R Bonetti, C Carbonini, A Guglielmetti, M Hussonnois, D Trubert and C Le Naour, Nucl. Phys. A 686, 64 (2001)

    Article  ADS  Google Scholar 

  13. S Kumar, M Balasubramaniam, R K Gupta, G Münzenberg and W Scheid, J. Phys. G: Nucl. Part. Phys. 29, 625 (2003)

    Article  ADS  Google Scholar 

  14. S Kumar, R Rani and R J Kumar, J. Phys. G: Nucl. Part. Phys. 36, 015110 (2009)

    Article  ADS  Google Scholar 

  15. M Balasubramaniam and R K Gupta, Phys. Rev. C 60, 064316 (1999)

    Article  ADS  Google Scholar 

  16. D N Poenaru, M Ivascu, A Sandulescu and W Greiner, J. Phys. G: Nucl. Part. Phys. 10, L183 (1984)

    Article  ADS  Google Scholar 

  17. W Greiner, M Ivascu, D N Poenaru and A Sandulescu, Z. Phys. A 320, 347 (1985)

    Article  ADS  Google Scholar 

  18. G Royer, R K Gupta and V Y Denisov, Nucl. Phys. A 632, 275 (1988)

    Article  ADS  Google Scholar 

  19. G Royer and R Moustabchir, Nucl. Phys. A 683, 182 (2001)

    Article  ADS  Google Scholar 

  20. G Royer and B J Remaud, J. Phys. G: Nucl. Part. Phys. 10, 1057 (1984)

    Article  ADS  Google Scholar 

  21. G Royer and B Remaud, Nucl. Phys. A 444, 477 (1985)

    Article  ADS  Google Scholar 

  22. G Royer, J. Phys. G: Nucl. Part. Phys. 26, 1149 (2000)

    Article  ADS  Google Scholar 

  23. G Royer and R A Gherghescu, Nucl. Phys. A 699, 479 (2002)

    Article  ADS  Google Scholar 

  24. G Royer, K Zbiri and C Bonilla, Nucl. Phys. A 730, 355 (2004)

    Article  ADS  Google Scholar 

  25. H Zhang, W Zuo, J Li and G Royer, Phys. Rev. C 74, 017304 (2006)

    Article  ADS  Google Scholar 

  26. G Royer and H F Zhang, Phys. Rev. C 77, 037602 (2008)

    Article  ADS  Google Scholar 

  27. X J Bao, H F Zhang, B S Hu, G Royer and J Q Li, J. Phys. G: Nucl. Part. Phys. 39, 095103 (2012)

    Article  ADS  Google Scholar 

  28. J Blocki, J Randrup, W J Swiatecki and C F Tsang, Ann. Phys. (NY) 105, 427 (1977)

    Article  ADS  Google Scholar 

  29. K P Santhosh, S Krishnan and J G Joseph, Pramana –J. Phys. 91: 5 (2018)

    Article  ADS  Google Scholar 

  30. K P Santhosh, C Nithya, H Hassanabadi and D T Akrawy, Phys. Rev. C 98, 024625 (2018)

    Article  ADS  Google Scholar 

  31. R Blendowske, T Fliessbach and H Walliser, Nucl. Phys. A 464, 75 (1987)

    Article  ADS  Google Scholar 

  32. S S Malik and R K Gupta, Phys. Rev. C 39, 1992(1989)

    Article  ADS  Google Scholar 

  33. S Kumar, R K Gupta and W Scheid, Int. J. Mod. Phys. E 3, 195 (1994)

    Article  ADS  Google Scholar 

  34. K Wei and H F Zhang, Phys. Rev. C 96, 021601 (2017)

    Article  ADS  Google Scholar 

  35. D N Poenaru, M Ivascu, A Sandulescu and W Greiner, Phys. Rev. C 32, 572 (1985)

    Article  ADS  Google Scholar 

  36. Y J Shi and W J Swiatecki, Nucl. Phys. A 464, 205 (1987)

    Article  ADS  Google Scholar 

  37. F Barranco, G F Bertsch, R A Broglia and E Vigezzi, Nucl. Phys. A 512 253 (1990)

    Article  ADS  Google Scholar 

  38. H F Zhang, J M Dong, G Royer, W Zuo and J Q Li, Phys. Rev. C 80, 037307 (2009)

    Article  ADS  Google Scholar 

  39. R Blendowske and H Walliser, Phys. Rev. Lett. 61, 1930 (1988)

    Article  ADS  Google Scholar 

  40. D Ni, Z Ren, T Dong and C Xu, Phys. Rev. C 78, 044310 (2008)

    Article  ADS  Google Scholar 

  41. M Balasubramaniam and N S Rajeswari, Int. J. Mod. Phys. E 23, 1450018 (2014)

    Article  ADS  Google Scholar 

  42. Z Ren, C Xu and Z Wang, Phys. Rev. C 70, 034304 (2004)

    Article  ADS  Google Scholar 

  43. Y Qian and Z Ren, J. Phys. G: Nucl. Part. Phys. 39, 015103 (2012)

    Article  ADS  Google Scholar 

  44. K P Santhosh and T A Jose, Nucl. Phys. A 992, 121626 (2019)

    Article  Google Scholar 

  45. K P Santhosh and T A Jose, Phys. Rev. C 99, 064604 (2019)

    Article  ADS  Google Scholar 

  46. K P Santhosh and C Nithya, Phys. Rev. C 97, 064616 (2018)

    Article  ADS  Google Scholar 

  47. J Blocki and W J Swiatecki, Ann. Phys. (NY) 132, 53 (1981)

    Article  ADS  Google Scholar 

  48. C Nithya, Studies on modes of decay of normal and hypernuclei, Ph.D. Thesis (Kannur University, 2019)

  49. G Audi, F G Kondev, M Wang, W J Huang and S Naimi, Chin. Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (KPS) would like to thank the Government of Kerala, India for the financial support in the form of Research Project under Innovative Research Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K P Santhosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, K.P., Jose, T.A. Cluster pre-formation probabilities and decay half-lives for trans-lead nuclei using modified generalised liquid drop model (MGLDM). Pramana - J Phys 95, 162 (2021). https://doi.org/10.1007/s12043-021-02187-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02187-w

Keywords

PACS Nos

Navigation