Skip to main content
Log in

Evaluation of bulk thermodynamical properties of QGP with two-loop corrections in the potential

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We extend the work of two-loop correction in the mean-field potential to study the thermodynamical properties of quark–gluon plasma (QGP). In the study, we look forward to determine bulk thermodynamic properties like pressure, entropy density, specific heat, quark number density, quark number fluctuations and speed of sound. The determinations are shown in figures and the figures are found almost similarly enhanced to our earlier results of one-loop correction. It means that the model with the inclusion of two-loop corrections can provide the entire thermodynamic information about the phase structure of QCD and the parameter used in the loop correction plays a pivotal role in forming stable droplets having less effect to calculate all the thermodynamical parameters. Still, the result can be considered in presenting QGP phase structure as it shows its representation within the range of standard thermodynamic properties and enhance the energy density and pressure from the lattice result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P Romatschke and U Romatschke, Phys. Rev. Lett. 99, 172301 (2007)

    Article  ADS  Google Scholar 

  2. B Schenke, S Jeon and C Gale, Phys. Rev. C 82, 014903 (2010)

    Article  ADS  Google Scholar 

  3. A Tawfik, Phys. Rev. D 71, 054502 (2005)

    Article  ADS  Google Scholar 

  4. E Karch, A Peikert and E Laermann, Nucl. Phys. B 605, 579 (2001).

    Article  ADS  Google Scholar 

  5. Bh Jarwal and S Somorendro Singh, Mod. Phys. Lett. A 32, 1750037 (2017)

  6. Bh Jarwal and S Somorendro Singh, Sprig. Proc. Phys. 190, 789 (2018)

  7. E Shurayak, Universe 3, 85 (2017)

    Article  ADS  Google Scholar 

  8. C Aidala et al, Phys. Rev. C 96, 064905 (2017)

    Article  ADS  Google Scholar 

  9. BRAHMS Collaboration: I Arsene et al, Nucl. Phys. A 757, 1 (2005)

  10. PHOBOS Collaboration: B B Back et al, Nucl. Phys. A 757, 28 (2005)

  11. STAR Collaboration: J Adams et al, Nucl. Phys. A 757 102 (2005)

    ADS  Google Scholar 

  12. PHENIX Collaboration: K Adcox et al, Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  13. M G Mustafa, D K Srivastava and B Sinha, Eur. J. Phys. C 5, 711 (1998)

    Article  ADS  Google Scholar 

  14. F Karsch, E Laermann, A Peikert, Ch Schmidt and S Stickan, Nucl. Phys. B 94, 411 (2001)

    Article  Google Scholar 

  15. F Karsch and H Satz, Nucl. Phys. A 702, 373 (2002)

    Google Scholar 

  16. S S Singh and G Saxena, Pramana – J. Phys. 92, 69 (2019)

  17. S S Singh and R Ramanathan, Ind. J. Phys. 92(2), 245 (2018)

    Article  Google Scholar 

  18. S S Singh and R Ramanathan, Prog. Theo. Expt. Phys. 103D02 (2014)

  19. R Ramanathan, Y K Mathur, K K Gupta and A K Jha, Phys. Rev. C 70, 027903 (2004)

    Article  ADS  Google Scholar 

  20. N Brambilla, A Pineda, J Soto and A Vairo, Phys. Rev. D 63, 014023 (2001)

    Article  ADS  Google Scholar 

  21. K Melnikov and A Yelkhovsky, Nucl. Phys. B 528, 59 (1998)

    Article  ADS  Google Scholar 

  22. A H Hoang, Phys. Rev. D 59, 014039 (1999)

    Article  ADS  Google Scholar 

  23. W Fischler, Nucl. Phys. B 129, 157 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  24. A Billoire, Phys. Lett B 92, 343 (1980)

    Article  ADS  Google Scholar 

  25. A V Smirnov, V A Smirnov and M Steinhauser, Phys. Lett. B 668, 239 (2008)

    Article  Google Scholar 

  26. A V Smirnov, V A Smirnov and M Steinhauser, Phys. Rev. Lett. 104, 112002 (2010)

    Article  ADS  Google Scholar 

  27. H Satz, Ann. Rev. Nucl. Part. Sci. 35, 245 (1985)

    Article  ADS  Google Scholar 

  28. G Neergaad and J Madsen, Phys. Rev. D 60, 05404 (1999)

    Article  Google Scholar 

  29. R Ramanathan, K K Gupta, A K Jha and S S Singh, Pramana – J. Phys. 68, 757 (2007)

  30. S S Singh, D S Gosain, Y Kumar and A K Jha, Pramana– J. Phys. 74, 27 (2010)

  31. S S Singh and G Saxena, Pramana – J. Phys. 88, 85 (2017)

  32. S S Singh, K K Gupta and A K Jha, Int. J. Mod. Phys. A 29, 1550092 (2014)

    Google Scholar 

  33. A K Jha, S S Singh and K K Gupta, Proc. Ind. Natl. Sci. Acad. 81, 174 (2015)

    Google Scholar 

  34. A N Tawfic and E A El Dahab, Int. J. Mod. Phys. A 30, 1550030 (2015)

  35. P P Pradhan, Int. J. Mod. Phys. D 26(2), 1792001 (2017)

    Article  ADS  Google Scholar 

  36. R V Gavai, S Gupta and S Mukherjee, Pramana – J. Phys. 71, 487 (2008)

  37. S Gottlieb, W Lin, D Toussaint, R L Renken and R L Singar, Phys. Rev. Lett. 59, 2247 (1987)

    Article  ADS  Google Scholar 

  38. Y Aoki, G Endrödi, Z Fodor, S D Katz and K K Szabó, Nature 443, 675 (2006)

    Article  ADS  Google Scholar 

  39. C Sasaki, B Friman and K Redlich, Phys. Rev. D 75, 074013 (2007)

    Article  ADS  Google Scholar 

  40. A Vuorinen, Phys. Rev. D 67, 074032 (2003)

    Article  ADS  Google Scholar 

  41. S Borsányi, Nucl. Phys. A 904–905, 270c (2013)

    Article  ADS  Google Scholar 

  42. Th Graf, J S Bielich and E S Fraga, hep-ph arXiv:1507.08941v1

  43. C Ratti, S Röbner and W Weise, Phys. Lett. B 649, 57 (2007)

    Article  ADS  Google Scholar 

  44. D S Gosain and S S Singh, Int. J. Theor. Phys. 53, 2688 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to R Ramanathan for his untiring discussion in preparing the manuscript and for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Somorendro Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chothe, H.R., Saxena, G. & Somorendro Singh, S. Evaluation of bulk thermodynamical properties of QGP with two-loop corrections in the potential. Pramana - J Phys 95, 147 (2021). https://doi.org/10.1007/s12043-021-02186-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02186-x

Keywords

PACS Nos

Navigation