Skip to main content
Log in

Non-classical Lie symmetry and conservation laws of the nonlinear time-fractional Kundu–Eckhaus (KE) equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This work provides an analytical investigation of the time-fractional Kundu–Eckhaus (KE) equation. We use the symmetry of the Lie group as an appropriate tool which deals with the wide class of fractional-order differential equations in Riemann–Liouville sense. In the current work, firstly, we employ classical Lie symmetries to obtain similarity reductions of nonlinear generalised time-fractional KE equation. At the final step, we find relevant exact solutions for the extracted generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Z Cui, P Yu and Z Mao, Adv. Dyn. Syst. Appl. 7(1), 31 (2012)

    MathSciNet  Google Scholar 

  2. A A Kilbsa, H M Srivastava and J J Trujillo, Theory and applications of fractional differential equations (Elsevier, New York, USA, 2006)

    Google Scholar 

  3. L Gaul, P Klein and S Kempfle, Mech. Syst. Signal Process. 5(2), 81 (1991)

    Article  ADS  Google Scholar 

  4. S A Khan, K Shah, G Zaman and F Jarad, Chaos 29(1), 013128 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  5. H Roohani Ghehsareh, S Heydari Bateni and A Zaghian, Eng. Anal. Bound. Elem. 61, 52 (2015)

  6. M Aslefallah, S Abbasbandy and E Shivanian, Eng. Anal. Bound. Elem. 108, 124 (2019)

    Article  MathSciNet  Google Scholar 

  7. Z Odibat and S Momani, Chaos Solitons Fractals 36(1), 167 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. J Cang, Y Tan, H Xu and S J Liao, Chaos Solitons Fractals 40(1), 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. J Feng and Z Yong, Comput. Math. Appl. 62, 1181 (2011)

    Article  MathSciNet  Google Scholar 

  10. M S Hashemi and D Baleanu, J. Comput. Phys. 316, 10 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. A Akgül, M Inc and M S Hashemi, Nonlinear Dynam. 88(4), 2817 (2017)

    Article  MathSciNet  Google Scholar 

  12. S Kheybari, Math. Comput. Simul. 182, 66 (2021)

    Article  MathSciNet  Google Scholar 

  13. S Kheybari, M T Darvishi and M S Hashemi, Appl. Numer. Math. 158, 103 (2020)

    Article  MathSciNet  Google Scholar 

  14. S Kheybari, M T Darvishi and M S Hashemi, Appl. Math. Comput. 348, 57 (2019)

    MathSciNet  Google Scholar 

  15. M S Hashemi, A Haji-Badali, F Alizadeh and D Baleanu, Optik 139, 20 (2017)

    Article  ADS  Google Scholar 

  16. M S Hashemi and D Baleanu, Lie symmetry analysis of fractional differential equations (CRC Press, 2020)

  17. G Bluman and S Anco, Symmetry and integration methods for differential equations (Springer, 2008) Vol. 154

  18. N H Ibragimov, CRC handbook of Lie group analysis of differential equations (CRC Press, 1995) Vol. 3

  19. P J Olver, Applications of Lie groups to differential equations (Springer, 2000) Vol. 107

  20. L Jian-Gen, Y Xiao-Jun, F Yi-Ying and C Ping, Math. Comput. Simul. 178, 407 (2020)

    Article  Google Scholar 

  21. S Pashayi, M S Hashemi and S Shahmorad, Commun. Nonlinear Sci. Numer. Simul. 51, 66 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. R Sahadevan and P Prakash, Chaos Solitons Fractals 104, 107 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. M Al-Smadi, O A Arqub and S Hadid, Phys. Scr. 95, 105205 (2020)

    Article  ADS  Google Scholar 

  24. A Kundu, J. Math. Phys. 25, 3433 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  25. F Calogero and W Eckhaus, Inverse Prob. 3, 229 (1987)

    Article  ADS  Google Scholar 

  26. O González-Gaxiola, Int. J. Math. Appl. 5, 112 (2017)

    Google Scholar 

  27. P Wang, B Tian, K Sun and F Qi, Appl. Math. Comput. 251, 233 (2015)

    MathSciNet  Google Scholar 

  28. A Biswas, M Ekici, A Sonmezoglu and A H Kara, Optik 179, 471 (2019)

    Article  ADS  Google Scholar 

  29. K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (Wiley, 1993)

  30. V Kiryakova, Generalised fractional calculus and applications, in: Pitman Research Notes in Mathematics (Longman, London, England, 1994) Vol. 301

  31. N H Ibragimov, J. Math. Anal. Appl. 333(1), 311 (2007)

    Article  MathSciNet  Google Scholar 

  32. S Y Lukashchuk, Non-linear Dynam. 80(1–2), 791 (2015)

    Article  MathSciNet  Google Scholar 

  33. R Gazizov, N Ibragimov and S Y Lukashchuk, Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 153 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. M Hashemi and Z Balmeh, The Eur. Phys. J. Plus 133(10), 427 (2018)

    Article  Google Scholar 

  35. G Wang, A Kara and K Fakhar, Nonlinear Dynam. 82(1–2), 281 (2015)

    Article  MathSciNet  Google Scholar 

  36. G W Wang and M S Hashemi, Pramana – J. Phys. 88: 7 (2017)

  37. R L Magin, Fractional calculus in bioengineering, Critical \(\text{Reviews}^{TM}\)in Biomedical Engineering 32(1–4) (2004)

  38. C A Monje, Y Chen, B M Vinagre, D Xue and V Feliu-Batlle, Fractional-order systems and controls: Fundamentals and applications (Springer, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Sajjad Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, M.S., Haji-Badali, A. & Alizadeh, F. Non-classical Lie symmetry and conservation laws of the nonlinear time-fractional Kundu–Eckhaus (KE) equation. Pramana - J Phys 95, 107 (2021). https://doi.org/10.1007/s12043-021-02135-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02135-8

Keywords

PACS Nos

Navigation