Skip to main content
Log in

Transition of phase order in coupled map systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

By studying the time series of logistic maps, dark lines in bifurcation diagrams and cobweb diagrams, characteristics of sequential iterations of the map are found. Before the merging together two chaotic bands, sequential iterations of the map present an ordered state. After that, with the instability of the hyperstable periodic orbit, sequential iterations of the map appear disordered. Therefore, the statistical results of time correlation of direction phase are introduced to describe the transition of the collective behaviour. Based on the two-dimensional coupled map lattice, the relationship between bifurcation parameters and order parameters with the change of coupling strength is studied. We show that when the coupling strength is weak, the critical bifurcation parameters are positively correlated with the coupling strength. When the coupling strength is large, the phase order of the system is not affected by the coupling strength. The transition of collective behaviour in a modular network is also studied. By fixing modularity and bifurcation parameters, with the change of coupling strength, the collective behaviour presents a transition process from spatiotemporal chaos to phase-ordered state. There are periodic orbits in the spatiotemporal chaotic region. A phase synchronisation region can be present in the antiphase synchronisation region. Furthermore, there exist multistable solutions in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F S De San Roman, S Boccaletti and D Maza, Phys. Rev. Lett. 81, 3639 (1998)

  2. S Jalan and R E Amritkar, Phys. Rev. Lett. 90, 014101 (2003)

    Article  ADS  Google Scholar 

  3. W Wang, Z H Liu and B B Hu, Phys. Rev. Lett. 84, 2610 (2000)

    Article  ADS  Google Scholar 

  4. R M May, Nature 261, 5560 (1976)

    Google Scholar 

  5. S Poria, M Dev Shrimali and S Sinha, Phys. Rev. E 78, 035201(R) (2008)

  6. S Sinha, Phys. Rev. E 66, 016209 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. B L Hao, Starting with a parabola (Shanghai Science and Technology Education Press, Shanghai, 1993)

    Google Scholar 

  8. W Z Zeng, B L Hao, G R Wang and S G Chen, Commun. Theor. Phys. 3, 283 (1984)

    Article  ADS  Google Scholar 

  9. R Jensen and C R Mycrs, Phys. Rev. A 32, 1222 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  10. W W Lin, C C Peng and C S Wang, Int. J. Bifurc. Chaos 09, 9900113 (1999)

    Google Scholar 

  11. J B Liu, C F Ye and S J Zhang, Phys. Lett. A 274, 27 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  12. X Yang, T Lu and G Liu, JAMP 08, 968 (2020)

    Article  Google Scholar 

  13. G C Zhuang, J Wang and W Wang, Phys. Rev. E 66, 046201 (2002)

    Article  ADS  Google Scholar 

  14. Y Z Zhou, J Zhou, X G Wang and Z H Liu, Europhys. Lett. 90, 30005 (2010)

    Article  ADS  Google Scholar 

  15. B Zhang, R H Du, S J Wang and S X Qu, Int. J. Mod. Phys. C 31, 2050011 (2020)

    Article  ADS  Google Scholar 

  16. J Stroud, M Barahona and T Pereira, Applications of chaos and nonlinear dynamics in science and engineering (Springer, Cham, 2015)

    Google Scholar 

  17. S J Wang and C S Zhou, New J. Phys. 14, 023005 (2012)

    Article  ADS  Google Scholar 

  18. A A Rad and S Boccaletti, Phys. Rev. Lett. 108, 228701 (2012)

    Article  ADS  Google Scholar 

  19. Q J Peng, M Zhao and H F Zhang, Int. J. Mod. Phys. C 24, 1350059 (2013)

    Article  ADS  Google Scholar 

  20. M Barthélemy, Phys. Rep. 499, 1 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  21. S Wasserman and K Faust, Social network analysis: Methods and applications (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  22. R Albert and A L Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. J X Gao, D Q Li and S Havlin, Natl. Sci. Rev. 0, 1 (2002)

  24. G D’Agostino and A Scala, Networks of networks: The last frontier of complexity (Springer, Cham, 2014)

    Book  Google Scholar 

  25. F S de San, D Q Li and S Havlin, Natl. Sci. Rev. 0, 1 (2002)

  26. L Huang, K Park, Y C Lai, L Yang and K Q Yang, Phys. Rev. Lett. 97, 164101 (2006)

    Article  ADS  Google Scholar 

  27. B P Rajvaidya, A D Deshmukh, P M Gade and G G Sahasrabudhe, Chaos Solitons Fractals 139, 110301 (2020)

    Article  MathSciNet  Google Scholar 

  28. P Chakraborty and S Poria, Pramana – J. Phys. 93: 19 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 11645005 and No. 11975144.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhang or Shi-Xian Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Liu, J. & Qu, SX. Transition of phase order in coupled map systems. Pramana - J Phys 95, 96 (2021). https://doi.org/10.1007/s12043-021-02128-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02128-7

Keywords

PACS Nos

Navigation