Skip to main content
Log in

Electronic, optical, magnetic and thermoelectric properties of CsNiO\(_{\mathrm {\mathbf {2}}}\) and CsCuO\(_{\mathrm {2}}\): Insights from DFT-based computer simulation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we present the results of a detailed computational study of the structural, electronic, optical, magnetic and thermoelectric properties of the CsNiO\(_{\mathrm {2}}\) and CsCuO\(_{\mathrm {2}}\) Heusler alloys, by using the full potential-linearised augmented plane wave (FP-LAPW) method. The calculated structural parameters of the title compounds are in excellent agreement with the available theoretical data. The equilibrium ground-state properties were calculated and it was showed that the studied compounds are energetically stable in the AlCu\(_{\mathrm {2}}\)Mn phase within the ferromagnetic state. In order to evaluate the stability of our compounds, the cohesion energies and formation energies have been evaluated. The optoelectronic and magnetic properties revealed that these compounds exhibit half-metallic ferromagnetic behaviour with large semiconductor and half-metallic gaps. This behaviour is confirmed by the integer values of total magnetic moments, but these compounds do not satisfy the Slater–Pauling rule. Furthermore, the thermoelectric parameters are computed in a large temperature range of 300–800 K to explore the potential of these compounds for high-performance technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S A Wolf, D D Awschalom, R A Buhrman, J M Daughton, S von Molnár, M L Roukes, A Y Chtchelkanova and D M Treger, Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. K Samanta, P Sanyal and T Saha-Dasgupta, Sci. Rep. 5, 15010 (2015)

    Article  ADS  Google Scholar 

  3. S Berri, J. Magn. Magn. Mater. 385, 124 (2015)

    Article  ADS  Google Scholar 

  4. S Berri, N Bouarissa and M Attallah, J. Supercond. Nov. Mag. 33, 1737 (2020)

    Article  Google Scholar 

  5. R De Groot, F Mueller, P Van Engen and K Buschow, Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  6. C Felser, G H Fecher and B Balke, Angew. Chem. Int. 46, 668 (2007)

    Article  Google Scholar 

  7. S Trudel, O Gaier, J Hamrle and B Hillebrands, J. Phys. D 43, 193001 (2010)

    Article  ADS  Google Scholar 

  8. I Galanakis, P Mavropoulos and P H Dederichs,    J. Phys. D 39, 765 (2006)

    Article  ADS  Google Scholar 

  9. K Özdogan, I Galanakis, E Şaşioglu and B Aktaş, J. Phys. Condens. Matter 18, 2905 (2006)

    Article  ADS  Google Scholar 

  10. Z Wen, T Kubota, T Yamamoto and K Takanashi, Sci. Rep. 5, 18387 (2016)

    Article  ADS  Google Scholar 

  11. R Keizer, S Goennenwein, T Klapwijk, G Miao, G Xiao and A Gupta, Nature 439, 825 (2006)

    Article  ADS  Google Scholar 

  12. V Pardo and W E Pickett, Phys. Rev. Lett. 102, 166803 (2009)

    Article  ADS  Google Scholar 

  13. H Li, H Bao, B Song, W Wang, X Chen, L He and W Yuan, Physica B 403, 4096 (2008)

    Article  ADS  Google Scholar 

  14. Y Yang, O Chen, A Angerhofer and YC Cao,  J. Am. Chem. Soc. 128, 12428 (2006)

    Article  Google Scholar 

  15. W Pickett and D Singh, J. Magn. Magn. Mater. 172, 237 (1997)

    Article  ADS  Google Scholar 

  16. R A de Groot and F M Mueller, Phys. Rev. Lett. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  17. X Q Chen, R Podloucky and P Rogl, J. Appl. Phys. 100, 113901 (2006)

    Article  ADS  Google Scholar 

  18. K Özdoğan, I Galanakis, E Şaşıoğlu and B Aktaş, Solid State. Commun. 142, 492 (2007)

    Article  ADS  Google Scholar 

  19. V Sharma, A K Solanki and A Kashyap, J. Magn. Magn. Mater. 322, 2922 (2010)

    Article  ADS  Google Scholar 

  20. G D Liu, X F Dai, H Y Liu, J L Chen and Y X Li, Phys. Rev. B 77, 014424 (2008)

    Article  ADS  Google Scholar 

  21. S Kervan and N Kervan, Intermetallics 24, 56 (2012)

    Article  Google Scholar 

  22. S Kervan and N Kervan, Intermetallics 37, 88 (2013)

    Article  Google Scholar 

  23. I Galanakis, K Özdoğan, E Şaşıoğlu and B Aktaş, Phys. Rev. B 75, 172405 (2007)

    Article  ADS  Google Scholar 

  24. J Li, YX Li, G X Zhou, Y B Sun and C Q Sun, Appl. Phys. Lett. 94, 242502 (2009)

    Article  ADS  Google Scholar 

  25. N Xing, Y Gong, W Zhang, J Dong and H Li, Comput. Mater. Sci. 45, 489 (2009)

    Article  Google Scholar 

  26. X P Wei, J B Deng, G Y Mao, S B Chu and X R Hu, Intermetallics 29, 86 (2012)

    Article  Google Scholar 

  27. T Hadji, H Khalfoun, H Rached, Y Guermit, A Azzouz-Rached and D Rached, Eur. Phys. J. B 93, 214 (2020)

    Article  ADS  Google Scholar 

  28. H Saib, S Dergal, H Rached and M Dergal, SPIN 10(4), 2050025 (2020)

    Article  ADS  Google Scholar 

  29. G Yong-Chun, W Xiao-Tian and H Rozale, Chin. Phys. B 24(6), 067102 (2015)

    Article  ADS  Google Scholar 

  30. X P Wei, Y D Chu, X W Sun, J B Deng and Y Z Xing, Superlattice Microst. 74, 70 (2014)

    Article  ADS  Google Scholar 

  31. Jiangtao Du, Shengjie Dong, X T Wang, Hui Zhao, L Y Wang and L F Feng, AIP Adv. 6, 105308 (2016)

  32. F Bagverdi and F Ahmadian, J. Supercond. Nov. Magn. 28, 2773 (2015)

    Article  Google Scholar 

  33. Z Erfan and F Ahmadian, J. Supercond. Nov. Magn. 28, 3301 (2015)

    Article  Google Scholar 

  34. P Blaha, K Schwarz, P Sorantin and S K Trickey, Comput. Phys. Commun. 59, 339 (1990)

    Article  Google Scholar 

  35. P Hohenberg and W Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  36. J P Perdew, S Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  37. I Galanakis, P Mavropoulos and P H Dederichs, J. Phys. D  39, 765 (2006)

    Article  ADS  Google Scholar 

  38. F Heusler, Z. Anorg. Allg. Chem. 161, 159 (1927)

    Article  Google Scholar 

  39. J Winterlik, G H Fecher, B Balke, T Graf, V Alijani, V Ksenofontov, C A Jenkins, O Meshcheriakova, C Felser and G Liu, Phys. Rev. B 83, 174448 (2011)

    Article  ADS  Google Scholar 

  40. F Murnaghan, Proc. Natl Acad. Sci. 30, 244 (1944)

    Article  ADS  Google Scholar 

  41. F Hajizadeh and F Ahmadian, J. Supercond. Nov. Magn. 31, 3515 (2018)

    Article  Google Scholar 

  42. L Fan, F Chen and Z Q Chen, J. Magn. Magn. Mater. 478, 264 (2019)

    Article  ADS  Google Scholar 

  43. C Ambrosch-Draxl and J O Sofo, Comput. Phys. Commun. 175, 1 (2006)

    Article  ADS  Google Scholar 

  44. I Galanakis, P H Dederichs and N Papanikolaou, Phys. Rev. B 66, 174429 (2002)

    Article  ADS  Google Scholar 

  45. M Rostami, M Afkani, M R Torkamani and F Kanjouri, Mater. Chem. Phys. 248, 122923 (2020)

    Article  Google Scholar 

  46. G K H Madsen and D J Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  47. K Hocine, O Cheref, K Bettine, D Rached, S Benalia, M Rabah, N Benkhettou and H Rached, SPIN 10(01), 2050007 (2020)

    Article  ADS  Google Scholar 

  48. G J Snyder and E S Toberer, Nat. Mater. 7, 105 (2008)

    Article  ADS  Google Scholar 

  49. S A Khandy and Jeng-Da Chai, J. Magn. Magn. Mater. 502, 166562 (2019)

  50. Heng Wang, Jianli Wang, Xianlong Cao and G Jeffrey Snyder, J. Mater. Chem. A 2, 3169 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by DGRSDT (The general directorate for scientific research and technological development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Rached.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belli, A., Cheref, O., Rached, H. et al. Electronic, optical, magnetic and thermoelectric properties of CsNiO\(_{\mathrm {\mathbf {2}}}\) and CsCuO\(_{\mathrm {2}}\): Insights from DFT-based computer simulation. Pramana - J Phys 95, 61 (2021). https://doi.org/10.1007/s12043-021-02088-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02088-y

Keywords

PACS Nos

Navigation