Skip to main content
Log in

Generation of microstructures and extreme sub-wavelength laser-induced periodic structures on the Si surface using \(\hbox {N}_{2}\) nanosecond pulsed laser for the reduction of reflectance

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A detailed study is done on the growth of microstructures and sub-wavelength laser-induced periodic surface structures (LIPSSs) on silicon (Si) surface using nitrogen (\(\hbox {N}_{2})\) nanosecond (ns) laser processing in air. The period of LIPSS is found to be as small as 37 nm which is close to \(\lambda /9\) times the irradiated laser wavelength (337 nm). In the optimised condition the sums total of reflectance (specular reflectance \(+\) diffuse reflectance) was found to be as low as 10% for a broad wavelength range. The reflectance behaviour has been correlated with the morphology of the generated microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V V Iyengar, B K Nayak and M C Gupta, Sol. Energy Mater. Sol. Cells 94, 2251 (2010)

    Article  Google Scholar 

  2. R A Myers, R Farrell, A M Karger, J E Carey and E Mazur, Appl. Opt. 45(35), 8825 (2006)

    Article  ADS  Google Scholar 

  3. J E Carey, C H Crouch, M Shen and E Mazur, Opt. Lett. 30, 1773 (2005)

    Article  ADS  Google Scholar 

  4. K Xu, C Zhang, R Zhou, R Ji and M Hong, Opt. Express 24(10), 10352 (2016)

    Article  ADS  Google Scholar 

  5. I Gnilitskyi, L Orazi, T White and V Gruzdev, Ultrafast laser texturing on Si with burst-mode picosecond laser pulses, Conference on Lasers and Electro-Optics (CLEO) (San Jose, CA, USA, 13–18 May 2018)

  6. S Kontermann, T Gimpel, A L Baumann, K M Guenther and W Schade, Laser processed black silicon for photovoltaic applications, Energy Procedia 27 (Silicon PV, Leuven, Belgium, 3–5 April 2012) pp. 390–395

  7. Z Huang, J E Carey, M Liu, X Guo, E Mazur and J C Campbell, Appl. Phys. Lett. 89, 033506 (2006)

    Article  ADS  Google Scholar 

  8. T Chen, J Si, X Hou, S Kanehira, K Miura and K Hirao, J. Appl. Phys. 110, 073106 (2011)

    Article  ADS  Google Scholar 

  9. J Yang, J Li, Z Du, Q Gong, J Teng and M Hong, Sci. Rep. 4(1), 1 (2014)

    Google Scholar 

  10. J Lv, T Zhang, P Zhang, Y Zhao and S Li, Nanoscale Res. Lett. 13(1), 1 (2018)

    Article  ADS  Google Scholar 

  11. V V Iyengar, B K Nayak, K L More, H M Meyer, M D Biegalski, J V Li and M C Gupta, Sol. Energy Mater. Sol. Cells 95, 2745 (2011)

    Article  Google Scholar 

  12. Y E B Vidhya and N J Vasa, J. Photon. Energy 6(1), 014001 (2016)

    Google Scholar 

  13. O García, J García-Ballesteros, D Munoz-Martin, S Núnez-Sánchez, M Morales, J Carabe, I Torres, J Gandía and C Molpeceres, Appl. Surf. Sci. 278, 214 (2013)

    Article  ADS  Google Scholar 

  14. C Wu, C Crouch, L Zhao, J Carey, R Younkin, J Levinson, E Mazur, R Farrell, P Gothoskar and A Karger, Appl. Phys. Lett. 78(13), 1850 (2001)

    Article  ADS  Google Scholar 

  15. C H Crouch, J E Carey, J M Warrender, M J Aziz, E Mazur and F Y Génin, Appl. Phys. Lett. 84(11), 18501852 (2004)

    Article  Google Scholar 

  16. M Halbwax, T Sarnet, P Delaporte, M Sentis, H Etienne, F Torregrosa, V Vervisch, I Perichaud and S Martinuzzi, Thin Solid Films 516(20), 6791 (2008)

    Article  ADS  Google Scholar 

  17. X C Wang, H Y Zheng, C W Tan, F Wang, H Y Yu and K L Pey, Opt. Express 18(18), 19379 (2010)

    Article  ADS  Google Scholar 

  18. X Zhu, H Zhu, D Liu, Y Huang, X Wang, H Yu, S Wang, X Lin and P Han, Adv. Mater. Res. 418–420, 217 (2012)

    Article  Google Scholar 

  19. D A Zuev, O A Novodvorsky, E V Khaydukov, O D Khramova, A A Lotin, L S Parshina, V V Rocheva, V Y Panchenko, V V Dvorkin, A Y Poroykov, G G Untila, A B Chebotareva, T N Kost and M A Timofeyev, Appl. Phys. B 105(3), 545 (2011)

    Article  ADS  Google Scholar 

  20. D Differt, B Soleymanzadeh, F Lükermann, C Strüber, W Pfeiffer and H Stiebig, Sol. Energy Mater. Sol. Cells 135, 72 (2015)

    Article  Google Scholar 

  21. B K Nayak and M C Gupta, Appl. Opt. 51, 114 (2011)

    Article  ADS  Google Scholar 

  22. E D Diebold, N H Mack, S K Doorn and E Mazur, Langmuir 25(3), 1790 (2009)

    Article  Google Scholar 

  23. S Hamad, S S B Moram, B Yendeti, G K Podagatlapalli, S V S Nageswara Rao, A P Pathak, M A Mohiddon and V Rao Soma, ACS Omega 3(12), 18420 (2018)

    Article  Google Scholar 

  24. A Y Vorobyev and C Guo, Opt. Express 19(S5), A1036 (2011)

    Article  Google Scholar 

  25. S Sarbada, Z Huang, Y C Shin and X Ruan, Appl. Phys. A 122(4), 453 (2016)

    Article  ADS  Google Scholar 

  26. T Tavera, N Pérez, A Rodríguez, P Yurrita, S M Olaizola and E Castano, Appl. Surf. Sci. 258, 1175 (2011)

    Article  ADS  Google Scholar 

  27. H Varel, M Wahmer, A Rosenfeld, D Ashkenasi and E Campbell, Appl. Surf. Sci. 128, 127 (1998)

    Google Scholar 

  28. R Buividas, M Mikutis and S Juodkazis, Prog. Quant. Electron. 38, 119 (2014)

    Article  ADS  Google Scholar 

  29. J Bonse, S Hohm, S V Kirner, A Rosenfeld and J Kruger, IEEE J. Sel. Top. Quantum Electron. 23(3), 1 (2017)

    Article  Google Scholar 

  30. N Yasumaru, K Miyazaki and J Kiuchi, Appl. Phys. A 76(6), 983 (2003)

    Article  ADS  Google Scholar 

  31. S K Das, H Messaoudi, A Debroy, E McGlynn and R Grunwald, Opt. Mater. Express 3(10), 1705 (2013)

    Article  ADS  Google Scholar 

  32. J Bonse, S Hohm, A Rosenfeld and J Kruger, Appl. Phys. A 110(3), 547 (2013)

    Article  ADS  Google Scholar 

  33. M Hashida, L Gemini, T Nishii, Y Miyasaka, H Sakagami and M Shimizu, J. Laser Micro/Nanoeng. 9, 234 (2014)

    Article  Google Scholar 

  34. X Li, C Zhang, H Li, Q Dai, S Lan and S Tie, Opt. Express 22(23), 28086 (2014)

    Article  ADS  Google Scholar 

  35. P Nurnberger, M H M Reinhardt, H Kim, E Pfeifer, M Kroll, S Muller, F Yang and N A Hampp, Appl. Surf. Sci. 425(15), 682 (2017)

    Article  ADS  Google Scholar 

  36. H Angermann, J Rappich and C Klimm, Open Phys. 7(2), 363 (2009)

    Article  ADS  Google Scholar 

  37. M A Goslvez and R M Nieminen, New J. Phys. 5, 100 (2003)

    Article  Google Scholar 

  38. R Einhaus, E Vazsonyi, J Szlufcik, J Nijs and R Mertens, Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference (Anaheim, CA, Sept. 30–Oct. 3, 1997) pp. 167–170

  39. P K Singh, R Kumar, M Lal, S N Singh and B K Das, Sol. Energy Mater. Sol. Cells 70(1), 103 (2001)

    Article  Google Scholar 

  40. B Vallejo, M Gonzalez-Manas, J Martínez-Lopez and M A Caballero, Sol. Energy 81(5), 565 (2007)

    Article  ADS  Google Scholar 

  41. P Panek, M Lipinski and J Dutkiewicz, J. Mater. Sci. 40(6), 1459 (2005)

  42. N Ximello, A D Shirazi, S Scholz and G Hahn, Influence of pyramid size of chemically textured silicon wafers on the characteristics of industrial solar cells, 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion (Valencia, Spain, 6–10 September 2010) pp. 1761–1764

  43. A M Al-Husseini and B Lahlouh, J. Appl. Sci. 17, 374 (2017)

    Article  Google Scholar 

  44. Y Wang, R Luo, J Ma and S Q Man, Fabrication of the pyramidal microstructure on silicon substrate using KOH solution, Proceedings of the 5th International Conference on Advanced Engineering Materials and Technology (China, 22–23 August 2015) pp. 302–307

  45. Y Si Ahmed, T Hadjersi and R Chaoui, Fabrication of pyramid/nanowire binary structure on n-type silicon using chemical etching, Special issue of the 2nd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2015) pp. 385–387

  46. C L Su, C H Hsu, K H Lan, R Leron, A Soriano and M H Li, Texturization of silicon wafers for solar cells by anisotropic etching with sodium silicate solutions, International Conference on Renewable Energies and Power Quality (ICREPQ’12) (Santiago de Compostela, Spain, 28–30 March 2012) pp. 1334–1337

  47. Z Xi, D Yang, W Dan, C Jun, X Li and D Que, Renew. Energy 29(13), 2101 (2004)

    Article  Google Scholar 

  48. Z Xi, Sol. Energy Mater. Sol. Cells 77(3), 255 (2003)

    Article  Google Scholar 

  49. Y E B Vidhya and N J Vasa, Mater. Res. Express 5(6), 066410 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SKD thanks Science & Engineering Research Board (SERB), Govt. of India (Project File Number: EMR/2015/ 001175) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.C., Das, S.K. Generation of microstructures and extreme sub-wavelength laser-induced periodic structures on the Si surface using \(\hbox {N}_{2}\) nanosecond pulsed laser for the reduction of reflectance. Pramana - J Phys 95, 11 (2021). https://doi.org/10.1007/s12043-020-02051-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02051-3

Keywords

PACS Nos

Navigation