Skip to main content
Log in

Some Bianchi I dark energy models in Brans–Dicke theory

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The present article deals with the study of interacting and non-interacting dark energy (DE) and dark matter (DM) in the spatially homogeneous and anisotropic Bianchi I space–time within the framework of Brans–Dicke (BD) scalar–tensor theory of gravitation. As the set of field equations is not closed, exact solutions are obtained using power-law relation and assuming a linearly varying deceleration parameter. The physical acceptability and stability of the obtained model are scrutinised using energy conditions and squared speed of sound. The statefinder diagnostic method is adopted to discuss and measure the deviation of the considered model from the \(\Lambda \) cold dark matter (\(\Lambda \)CDM) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A G Riess et al, Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  2. S J Perlmutter et al, Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  3. S J Perlmutter et al, Nature 391, 51 (1998).

    ADS  Google Scholar 

  4. C L Bennett et al, Astrophys. J. Suppl. 148, 1 (2003)

    ADS  Google Scholar 

  5. M Tegmark et al, Phys. Rev. D 69, 103501 (2004)

    ADS  Google Scholar 

  6. C L Bennett et al, Astrophys. J. Suppl. 148, 97 (2003)

    ADS  Google Scholar 

  7. C L Bennett et al, Astrophys. J. 583, 1 (2003)

    ADS  Google Scholar 

  8. B Novosyadlyj, O Sergijenko and S Apunevych, J. Phys. Stud. 15, 1901 (2011)

    Google Scholar 

  9. A K Yadav, F Rahaman and S Ray, Int. J. Theor. Phys. 50, 871 (2011)

    Google Scholar 

  10. U Mukhopadhyay, S Ray and F Rahaman, Int. J. Mod. Phys. D 19, 475 (2010)

    ADS  Google Scholar 

  11. P P Avelino, L Losano and J J Rodrigues, Phys. Lett. B 699, 10 (2011)

    ADS  Google Scholar 

  12. A Burgazli, M Eingorn and A Zhunk, Eur. Phys. J. C 75, 118 (2015)

    ADS  Google Scholar 

  13. V Sahni and A Starobinsky, Int. J. Mod. Phys. D 15, 2105 (2006)

    ADS  Google Scholar 

  14. N Dalal, K Abazajian, E E Jenkins and A V Manohar, Phys. Rev. Lett. 87, 141302 (2001)

    ADS  Google Scholar 

  15. L P Chimento, A S Jakubi and D Pavon, Phys. Rev. D 67, 087302 (2003)

    ADS  Google Scholar 

  16. R Bali, Int. J. Theor. Phys. 50, 3043 (2011)

    Google Scholar 

  17. R Bali, Mod. Phys. Lett. A 33, 1850238 (2018)

    ADS  Google Scholar 

  18. W F Kao and I Chen Lin, Eur. Phys. J. C 77, 805 (2017)

    ADS  Google Scholar 

  19. R Raushan, A K Shukla, R Chaubey and T Singh, Pramana – J. Phys. 92: 5 (2019)

    Google Scholar 

  20. C H Brans and R H Dicke, Phys. Rev. 124, 925 (1961)

    ADS  MathSciNet  Google Scholar 

  21. S K Rama and S Ghosh, Phys. Lett. B 383, 31 (1966)

    ADS  Google Scholar 

  22. S K Rama, Phys. Lett. B 373, 282 (1966)

    Google Scholar 

  23. C Romero and A Barros, Phys. Lett. A 173, 243 (1993)

    ADS  Google Scholar 

  24. N Banerjee and D Pavon, Phys. Rev. D 63, 043504 (1966)

    ADS  Google Scholar 

  25. A Chand, R K Mishra and A Pradhan, Astrophys. Space Sci. 361, 81 (2016)

    ADS  Google Scholar 

  26. G P Singh, A Y Kale and J Tripathi, Rom. J. Phys. 58, 23 (2013)

    Google Scholar 

  27. G P Singh and B K Bishi, Adv. High Energy Phys. 1390572, 2017 (2017)

    Google Scholar 

  28. T Singh and L N Rai, Gen. Rel. Grav. 15, 875 (1983)

    ADS  Google Scholar 

  29. H Amirhashchi, A Pradhan and H Zainuddin, Res. Astron. Astrophys. 13, 129 (2013)

    ADS  Google Scholar 

  30. H Amirhashchi, Res. Astron. Astrophys. 14, 1121 (2014)

    ADS  Google Scholar 

  31. K S Adhav, S L Munde, G B Tayade and V D Bokey, Astrophys. Space Sci. 359, 24 (2015)

    ADS  Google Scholar 

  32. H Amirhashchi, S N Ali Qazi and H Zainuddin, Res. Astron. Astrophys. 14, 1383 (2014)

    ADS  Google Scholar 

  33. J E Gonzalez, H H B Silva, R Silva and J S Alcaniz, Eur. Phys. J. C 78, 730 (2018)

    ADS  Google Scholar 

  34. N Tamanini, Phys. Rev. D 92, 043524 (2015)

    ADS  Google Scholar 

  35. G K Goswami, A Pradhan and A Beesham, Pramana – J. Phys. 93: 89 (2019)

    ADS  Google Scholar 

  36. H Amirhashchi, A Pradhan and R Jaiswal, Int. J. Theor. Phys. 52, 2735 (2013)

    Google Scholar 

  37. B Saha, H Amirhashchi and A Pradhan, Astrophys. Space Sci. 342, 257 (2012)

    ADS  Google Scholar 

  38. H Amirhashchi, D S Chouhan and A Pradhan, Electron. J. Theor. Phys. 11, 109 (2014)

    Google Scholar 

  39. S D Katore and D V Kapse, Adv. High Energy Phys. 2854567, 2018 (2018)

    Google Scholar 

  40. M F Shamir and A A Bhatti, Can. J. Phys. 90, 193 (2012)

    ADS  Google Scholar 

  41. A Barros and C Romero, Mod. Phys. Lett. A 18, 2117 (2003)

    ADS  Google Scholar 

  42. V B Johri and K Desikan, Gen. Rel. Grav. 26, 1217 (1994)

    ADS  Google Scholar 

  43. D K Ciftci and V Faraoni, Ann. Phys. 391, 65 (2018)

    ADS  Google Scholar 

  44. O Akarsu and T Dereli, Int. J. Theor. Phys. 51, 612 (2012)

    Google Scholar 

  45. A G Riess et al, Astrophys. J. 607, 665 (2004)

    ADS  Google Scholar 

  46. J V Cunha and J A S Lima, Mon. Not. R. Astron. Soc. 390, 210 (2008)

    ADS  Google Scholar 

  47. J V Cunha, Phys. Rev. D 79, 047301 (2009)

    ADS  Google Scholar 

  48. R Nair, S Jhingan and D Jain, J. Cosmol. Astropart. Phys. 1201, 018 (2012)

    ADS  Google Scholar 

  49. O Akarsu, S Kumar, R Myrzakulov, M Sami and L Xu, J. Cosmol. Astropart. Phys. 1401, 022 (2014)

    ADS  Google Scholar 

  50. N Aghanim et al, arXiv:1807.06209 [astro-ph.CO] (2018)

  51. R Chaubey and A K Shukla, Pramana – J. Phys. 88: 65 (2017)

    ADS  Google Scholar 

  52. F Wu and X Chen, Phys. Rev. D 82, 083003 (2010)

    ADS  Google Scholar 

  53. A G Riess et al, Astrophys. J 699, 539 (2009)

    ADS  Google Scholar 

  54. L Xu, J Lu and W Li, arXiv:0905.4174 [astro-ph.CO] (2009)

  55. V Acquaviva, C Baccigalupi, S M Leach, A R Liddle and F Perrotta, Phys. Rev. D 71, 104025 (2005)

    ADS  Google Scholar 

  56. I Quiros et al, Class. Quant. Grav. 35, 075005 (2018)

    ADS  Google Scholar 

  57. Z K Guo, N Ohta and S Tsujikawa, Phys. Rev. D 76, 023508 (2007)

    ADS  Google Scholar 

  58. D Pavon and B wang, Gen. Rel. Grav. 41, 1 (2009)

    ADS  Google Scholar 

  59. V Sahni, T D Saini, A A Starobinsky and U Alam, JETP Lett. 77, 201 (2003)

    ADS  Google Scholar 

  60. S W Hawking and G F R Ellis, The large-scale structure of space-time (Cambridge University Press, Cambridge, 1973)

    MATH  Google Scholar 

  61. R M Wald, General relativity (University of Chicago Press, Chicago, 1984

    MATH  Google Scholar 

  62. M Visser, Science 276, 88 (1997)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to convey appreciation towards the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, for providing the facility and hospitality where this work was partially carried out. AL and NH are grateful to Dr Binaya K Bishi for giving some valuable suggestions on the manuscript before submission. The authors would also like to express their sincere thanks to the reviewer and editor for their valuable, constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G P Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G.P., Lalke, A.R. & Hulke, N. Some Bianchi I dark energy models in Brans–Dicke theory. Pramana - J Phys 94, 147 (2020). https://doi.org/10.1007/s12043-020-02022-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-02022-8

Keywords

PACS Nos

Navigation