Skip to main content
Log in

A comprehensive theoretical analysis of \(^{12}\hbox {B}+{}^{58}\hbox {Ni}\) elastic scattering measured for the first time by using different density distributions, different nuclear potentials and different cluster approaches

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Recently, Zevallos et al [Phys. Rev. C 99, 064613 (2019)] measured, for the first time, the elastic scattering data of \(^{12}\hbox {B}+{}^{58}\hbox {Ni}\) reaction at \(E_{\text {Lab}} = 30.0\) and 33.0 MeV. For the first time, we show a comprehensive theoretical analysis of the experimental data of \(^{12}\hbox {B}+{}^{58}\hbox {Ni}\) reaction. First, we propose alternative density distributions for the \(^{12}\hbox {B}\) nucleus, and obtain the elastic scattering angular distributions of \(^{12}\hbox {B} +{}^{58}\hbox {Ni}\) reaction with the help of these densities. Secondly, we calculate the elastic scattering cross-sections of \(^{12}\hbox {B} + {}^{58}\hbox {Ni}\) reaction by using 13 different nuclear potentials to reveal alternative nuclear potentials. Finally, we examine cluster structures such as \(\alpha +{}^{8}\hbox {Li}\) and \(n+{}^{11}\hbox {B}\) of the \(^{12}\hbox {B}\) nucleus by using a simple approach, and acquire elastic scattering cross-sections of \(^{12}\hbox {B}+{}^{58}\hbox {Ni}\) reaction over these cluster approaches. We compare all the theoretical results with the experimental data, and discuss their similarities and differences. Also, we propose new equations of both normalisation constant and imaginary potential parameters for all the systems analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M Thoennessen, At. Data Nucl. Data Tables. 98, 43 (2012)

    ADS  Google Scholar 

  2. S Leblond et al, Phys. Rev. Lett. 121, 262502 (2018)

    ADS  Google Scholar 

  3. https://www.nndc.bnl.gov/nudat2/chartNuc.jsp

  4. T Ohtsubo, Y Nakayama, T Izumikawa, S Takeda, N Nakamura, H Tanji and T Minamisono, Hyperfine Interact. 88, 25 (1994)

    ADS  Google Scholar 

  5. E O N Zevallos et al, Phys. Rev. C 99, 064613 (2019)

    ADS  Google Scholar 

  6. M Aygun, Pramana – J. Phys. 93: 72 (2019)

    ADS  Google Scholar 

  7. M Aygun, Int. J. Mod. Phys. E 27, 1850055 (2018)

    ADS  Google Scholar 

  8. M Aygun, Commun. Theor. Phys. 66, 531 (2016)

    ADS  Google Scholar 

  9. M Aygun, Chin. J. Phys. 53, 080301 (2015)

    Google Scholar 

  10. M Aygun and I Boztosun, Few-Body Syst. 55, 203 (2014)

    ADS  Google Scholar 

  11. M Aygun, Ann. Nucl. Energy 51, 1 (2013)

    Google Scholar 

  12. M Aygun, Eur. Phys. J. A 48, 145 (2012)

    ADS  Google Scholar 

  13. M Aygun, Y Kucuk, I Boztosun and A A Ibraheem, Nucl. Phys. A 848, 245 (2010)

    ADS  Google Scholar 

  14. A N Abdullah, Pramana – J. Phys. 89: 43 (2017)

    ADS  Google Scholar 

  15. M Freer, Rep. Prog. Phys. 70, 2149 (2007)

    ADS  Google Scholar 

  16. M Aygun, Pramana – J. Phys. 88: 53 (2017)

    ADS  Google Scholar 

  17. M Aygun and Z Aygun, Nucl. Sci. Technol. 28, 86 (2017)

    Google Scholar 

  18. M Aygun, Rev. Mex. Fis. 62, 336 (2016)

    Google Scholar 

  19. G R Satchler, Direct nuclear reactions (Oxford University Press, Oxford, 1983)

    Google Scholar 

  20. I J Thompson, Comput. Phys. Rep. 7, 167 (1988)

    ADS  Google Scholar 

  21. M G Pellegriti et al, J. Phys.: Conf. Ser. 267, 012011 (2011)

    Google Scholar 

  22. P Descouvemont and I Baraffe, Nucl. Phys. A 514, 66 (1990)

    ADS  Google Scholar 

  23. G R Satchler and W G Love, Phys. Rep. 55, 183 (1979)

    ADS  Google Scholar 

  24. G D Alkhazov et al, Nucl. Phys. A 712, 269 (2002)

    ADS  Google Scholar 

  25. A V Dobrovolsky et al, Nucl. Phys. A 766, 1 (2006)

    ADS  Google Scholar 

  26. C W Glover, K W Kemper, L A Parks, F Petrovich and D P Stanley, Nucl. Phys. A 337, 520 (1980)

    ADS  Google Scholar 

  27. R A Rego, Nucl. Phys. A 581, 119 (1995)

    ADS  Google Scholar 

  28. A K Chaudhuri, Phys. Rev. C 49, 1603 (1994)

    ADS  Google Scholar 

  29. J X Li et al, Chin. Phys. C 34, 452 (2010)

    ADS  Google Scholar 

  30. C J Lin, Z H Liu, H Q Zhang, Y W Wu, F Yang and M Ruan, Chin. Phys. Lett. 18, 1183 (2001)

    ADS  Google Scholar 

  31. J Cook, Commun. Comput. Phys. 25, 125 (1982)

    ADS  Google Scholar 

  32. E O N Zevallos, Investigation of elastic scattering of radioactive\(^{12}\)B nucleus on\(^{58}\)Ni target (University of Sao Paulo, 2018)

  33. M El-Azab Farid, A A Ibraheem, J H Al-Zahrani, W R Al-Harbi and M A Hassanain, J. Phys. G 40, 075108 (2013)

    ADS  Google Scholar 

  34. L C Chamon et al, Phys. Rev. C 66, 014610 (2002)

    ADS  Google Scholar 

  35. W M Seif and H Mansour, Int. J. Mod. Phys. E 24, 1550083 (2015)

    ADS  Google Scholar 

  36. C Ngô, B Tamain, M Beiner, R J Lombard, D Mas and H H Deubler, Nucl. Phys. A 252, 237 (1975)

    ADS  Google Scholar 

  37. H Ngô and C Ngô, Nucl. Phys. A 348, 140 (1980)

    ADS  Google Scholar 

  38. R K Gupta, D Singh and W Greiner, Phys. Rev. C 75, 024603 (2007)

    ADS  Google Scholar 

  39. O N Ghodsi and F Torabi, Phys. Rev. C 92, 064612 (2015)

    ADS  Google Scholar 

  40. R K Gupta, D Singh, R Kumar and W Greiner, J. Phys. G 36, 075104 (2009)

    ADS  Google Scholar 

  41. E Wesolowski, J. Phys. G 11, 1401 (1985)

    ADS  Google Scholar 

  42. N K Dhiman, Ukr. J. Phys. 57, 3 (2012)

    Google Scholar 

  43. H Schechter and L F Canto, Nucl. Phys. A 315, 470 (1979)

    ADS  Google Scholar 

  44. S A Moszkowski, Nucl. Phys. A 309, 273 (1978)

    ADS  Google Scholar 

  45. M El-Azab Farid and M A Hassanain, Nucl. Phys. A 678, 39 (2000)

    ADS  Google Scholar 

  46. J Blocki, J Randrup, W J Swiatecki and C F Tsang, Ann. Phys. (NY) 105, 427 (1977)

    ADS  Google Scholar 

  47. I Dutt and R K Puri, Phys. Rev. C 81, 064609 (2010)

    ADS  Google Scholar 

  48. W D Myers and W J Swiatecki, Nucl. Phys. 81, 1 (1966)

    Google Scholar 

  49. R Kumar, Phys. Rev. C 84, 044613 (2011)

    ADS  Google Scholar 

  50. P Moller, J R Nix, W D Myers and W J Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    ADS  Google Scholar 

  51. K Pomorski and J Dudek, Phys. Rev. C 67, 044316 (2003)

    ADS  Google Scholar 

  52. I Dutt and R K Puri, Phys. Rev. C 81, 047601 (2010)

    ADS  Google Scholar 

  53. R Gharaei, V Zanganeh and N Wang, Nucl. Phys. A 979, 237–250 (2018)

    ADS  Google Scholar 

  54. W Reisdorf, J. Phys. G 20, 1297 (1994)

    ADS  Google Scholar 

  55. G L Zhang, Y J Yao, M F Guo, M Pan, G X Zhang and X X Liu, Nucl. Phys. A 951, 86 (2016)

    ADS  Google Scholar 

  56. A Winther, Nucl. Phys. A 594, 203 (1995)

    ADS  Google Scholar 

  57. P R Christensen and A Winther, Phys. Lett. B 65, 19 (1976)

    ADS  Google Scholar 

  58. V Yu Denisov, Phys. Lett. B 526, 315 (2002)

    ADS  Google Scholar 

Download references

Acknowledgements

Author thanks the referee for valuable discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Aygun.

Appendices

Appendix A: Density distributions

1.1 Density distributions of \(^{12}\hbox {B}\) projectile

1.1.1 São Paulo density distribution

São Paulo density which has the two-parameter Fermi (2pF) shape [34] can be given by

$$\begin{aligned} \rho _{_{i}}(r)= & {} \frac{\rho _{0i}}{1+\text {exp}\left( \frac{r-R_{i}}{a_{i}}\right) }, \quad i=n,p \end{aligned}$$
(16)
$$\begin{aligned} R_{n}= & {} 1.49N^{1/3}-0.79, \quad a_{n}=0.47+0.00046N,\nonumber \\ \end{aligned}$$
(17)
$$\begin{aligned} R_{p}= & {} 1.81Z^{1/3}-1.12, \quad a_{p}=0.47-0.00083Z,\nonumber \\ \end{aligned}$$
(18)

where \(R_{n(p)}\) and \(a_{n(p)}\) are half-density radius and surface thickness parameter of neutron(proton), respectively. The São Paulo density is shown as SP in our study.

1.1.2 Fermi density distribution

Fermi density is in the same form as SP density distribution except for the values of \(R_{n}\), \(R_{p}\), \(a_{n}\) and \(a_{p}\). Thus, \(R_{n(p)}\) and \(a_{n(p)}\) values are derived from the following equations [35]:

$$\begin{aligned} R_{n}= & {} 0.953N^{1/3}+0.015Z+0.774, \nonumber \\ a_{n}= & {} 0.446+0.0072\left( \frac{N}{Z}\right) , \end{aligned}$$
(19)
$$\begin{aligned} R_{p}= & {} 1.322Z^{1/3}+0.007N+0.022, \nonumber \\ a_{p}= & {} 0.449+0.0071\left( \frac{Z}{N}\right) . \end{aligned}$$
(20)

Fermi density is shown as 2pF in our work.

1.1.3 Ngô–Ngô density distribution

Ngô–Ngô density distribution is parametrised as [36, 37]

$$\begin{aligned}&\rho _{_{i}}(r) = \frac{\rho _{0i}}{1+\text {exp}\left( \frac{r-C_{i}}{0.55}\right) }, \quad i=n,p \end{aligned}$$
(21)
$$\begin{aligned}&\rho _{_{0n}}=\frac{3}{4\pi } \frac{N}{A} \frac{1}{r_{0n}^{3}}, \quad \rho _{_{0p}}=\frac{3}{4\pi } \frac{Z}{A} \frac{1}{r_{0p}^{3}}, \end{aligned}$$
(22)

where C, the central radius, is

$$\begin{aligned} C=R\left( 1-\frac{1}{R^{2}}\right) , \,\,\,R=\frac{NR_{n}+ZR_{p}}{A}. \end{aligned}$$
(23)

The sharp radii of neutron and proton are formulated by

$$\begin{aligned} R_{n}= & {} r_{0n}A^{1/3}, \quad r_{0n}=1.1375+1.875\times 10^{-4}A, \nonumber \\\end{aligned}$$
(24)
$$\begin{aligned} R_{p}= & {} r_{0p}A^{1/3}, \quad \quad r_{0p}=1.128 \,\, \text {fm}. \end{aligned}$$
(25)

Ngô–Ngô density is shown as Ngo in our study.

1.1.4 Gupta density distribution 1

Gupta density distribution is shown as

$$\begin{aligned}&\rho _{_{i}}(r) = \frac{\rho _{0i}}{1+\text {exp}\left( \frac{r-R_{0i}}{a_{i}}\right) },\nonumber \\&\rho _{0i}=\frac{3A_{i}}{4\pi R_{0i}^{3}}\left( 1+\frac{\pi ^{2}a_{i}^{2}}{R_{0i}^{2}}\right) ^{-1}, \end{aligned}$$
(26)

where \(R_{0i}\) and \(a_{i}\) are taken as [38, 39]

$$\begin{aligned} R_{0i}= & {} 0.90106 + 0.10957A_{i} - 0.0013A_{i}^{2} \nonumber \\&+ 7.71458 \times 10^{-6} A_{i}^{3} - 1.62164 \times 10^{-8} A_{i}^{4}, \nonumber \\ \end{aligned}$$
(27)
$$\begin{aligned} a_{i}= & {} 0.34175+0.01234A_{i}\nonumber \\&-2.1864 \times 10^{-4}A_{i}^{2}+1.46388 \times 10^{-6} A_{i}^{3}\nonumber \\&-3.24263 \times 10^{-9}A_{i}^{4}. \end{aligned}$$
(28)

This density distribution is shown as G1 in our study.

1.1.5 Gupta density distribution 2

This density distribution is in the same form as G1 density except for the values of \(R_{0i}\) and \(a_{i}\) given in the following forms [40]:

$$\begin{aligned} R_{0i}= & {} 0.9543 + 0.0994A_{i} - 9.8851 \times 10^{-4} A_{i}^{2}\nonumber \\&+ 4.8399 \times 10^{-6} A_{i}^{3} - 8.4366 \times 10^{-9} A_{i}^{4}, \end{aligned}$$
(29)
$$\begin{aligned} a_{i}= & {} 0.3719 + 0.0086A_{i}-1.1898 \times 10^{-4}A_{i}^{2}\nonumber \\&+6.1678 \times 10^{-7} A_{i}^{3}-1.0721 \times 10^{-9}A_{i}^{4}. \end{aligned}$$
(30)

This density is shown as G2 in our study.

1.1.6 Wesolowski density distribution

Wesolowski [41] has showed different parameters of 2pF density parametrised by [42]

$$\begin{aligned} \rho _{0}= & {} \frac{3}{4\pi R_{0}^{3}}\left( 1+\frac{\pi ^{2}a^{2}}{R_{0}^{2}}\right) ^{-1},\,\,\, a=0.39 \,\text {fm}, \end{aligned}$$
(31)
$$\begin{aligned} R_{0}= & {} R{'}\left[ 1-\left( \frac{b}{R^{'}}\right) ^{2}+\frac{1}{3} \left( \frac{b}{R^{'}}\right) ^{6}+\cdots \right] ,\end{aligned}$$
(32)
$$\begin{aligned} R{'}= & {} \left[ 1.2-\frac{0.96}{A^{1/3}}\left( \frac{N-Z}{A}\right) \right] A^{1/3},\quad \,\,\, b=\frac{\pi }{\sqrt{3}}a. \nonumber \\ \end{aligned}$$
(33)

This density is shown as W in our work.

1.1.7 Schechter density distribution

Schechter and Canto [43] have reported another parameters of 2pF density distribution shown by

$$\begin{aligned} \rho _{0}=\frac{0.212}{1+2.66 A^{-2/3}}, \quad R_{0}=1.04A^{1/3}, \quad a=0.54 \,\, \text {fm}. \end{aligned}$$
(34)

This density is shown as S in our work.

1.1.8 Moszkowski density distribution

This density distribution proposed by Moszkowski [44] is in the form of 2pF density, and its parameters are given by

$$\begin{aligned} \rho _{0}=0.16 \,\, \text {nucl.}/\text {fm}^{3}, \quad R_{0}=1.15A^{1/3}, \quad a=0.50 \,\, \text {fm}. \end{aligned}$$
(35)

This density is shown as M in our study.

1.1.9 Density distribution of \(^{58}\hbox {Ni}\) target nucleus

In the calculations, the elastic scattering of \(^{12}\hbox {B}\) projectile by \(^{58}\hbox {Ni}\) has been investigated. For this purpose, the density distribution of \(^{58}\hbox {Ni}\) target is obtained by

$$\begin{aligned} \rho (r) = \frac{\rho _{0}}{1+\text {exp}\left( \frac{r-c}{z}\right) }, \end{aligned}$$
(36)

where \(\rho _{0} = 0.172\), \(c = 4.094\) and \(z = 0.54\) [45].

Appendix B: Nuclear potentials

1.1 Proximity 1977 (Prox 77), Modified Proximity 1988 (Mod-Prox 88), Proximity 1995 (Prox 95), Proximity 2003 (Prox 2003), Proximity 2010 (Prox 2010) potentials

Prox 77 version of proximity potential [46, 47] is formulated as

$$\begin{aligned} V_{N}^{\mathrm {Prox}\, 77}(r)=4\pi \gamma b {\bar{R}} \Phi \left( \zeta =\frac{r-C_{1}-C_{2}}{b}\right) \, \text {MeV}, \end{aligned}$$
(37)

where

$$\begin{aligned} {\bar{R}}= & {} \frac{C_{1}C_{2}}{C_{1}+C_{2}},\nonumber \\ C_{i}= & {} R_{i} \bigg [1-\left( \frac{b}{R_{i}}\right) ^2+\cdots \bigg ], \quad b\approx 1\,\text {fm}. \end{aligned}$$
(38)

\(R_{i}\), the effective radius, is given by

$$\begin{aligned} R_{i}=1.28A_{i}^{1/3}-0.76+0.8A_{i}^{-1/3} \text {fm, } \quad i=1, 2. \end{aligned}$$
(39)

\(\gamma \), the surface energy coefficient, is given by

$$\begin{aligned} \gamma =\gamma _{0} \bigg [1-k_{s} \left( \frac{N-Z}{N+Z}\right) ^{2}\bigg ]. \end{aligned}$$
(40)

The universal function \(\Phi (\zeta )\) is in the following form:

$$\begin{aligned} \Phi (\zeta )\!=\!\left\{ \! \begin{array}{ll} -\frac{1}{2} (\zeta -2.54)^{2}\!-\!0.0852(\zeta \!-\!2.54)^{3}, &{}\quad \! \text {for}\,\ \zeta \!\le \! 1.2511,\\ -3.437 ~\text {exp}\left( -\frac{\zeta }{0.75}\right) , &{}\quad \! \text {for}\,\ \zeta \!\ge \! 1.2511.\\ \end{array} \right. \end{aligned}$$

As a result of many studies on proximity potential, different values of \(\gamma _{0}\) and \(k_{s}\) have been suggested although the other parameters of the potentials are the same as Prox 77. Each new situation has been evaluated as a different proximity potential. In this respect, seven various potentials are investigated in our study, and the \(\gamma _{0}\) and \(k_{s}\) values of the potentials are listed in table 4.

Table 4 \(\gamma _{0}\) and \(k_{s}\) values of Prox 77, Mod-Prox 88, Prox 95, Prox 2003-I, Prox 2003-II, Prox 2003-III and Prox 2010 potentials.

1.2 Broglia and Winther 1991 (BW 91) potential

BW 91 potential [54] is taken as [55]

$$\begin{aligned} V_{N}^{\mathrm {BW}\,91}(r)=-\frac{V_{0}}{\left[ 1 + \text {exp} \left( \frac{r-R_{0}}{a}\right) \right] } \text {MeV}, \end{aligned}$$
(41)

where

$$\begin{aligned} V_{0}=16\pi \frac{R_{1}R_{2}}{R_{1}+R_{2}}\gamma a, \quad a=0.63 \,\text {fm} \end{aligned}$$
(42)

and

$$\begin{aligned} R_{0}= & {} R_{1}+R_{2}+0.29, \nonumber \\ R_{i}= & {} 1.233A_{i}^{1/3}-0.98A_{i}^{-1/3}, \quad i=1,2, \end{aligned}$$
(43)

with \(\gamma \) as

$$\begin{aligned} \gamma= & {} \gamma _{0}\bigg [1-k_{s}\left( \frac{N_{p}-Z_{p}}{A_{p}}\right) \left( \frac{N_{t}-Z_{t}}{A_{t}}\right) \bigg ],\nonumber \\&\gamma _{0}=0.95\, \text {MeV/fm}^{2}, \, k_{s}=1.8. \end{aligned}$$
(44)

1.3 Aage Winther (AW 95) potential

AW 95 and BW 91 potentials are the same except for the following values [55, 56]:

$$\begin{aligned} a=\left[ \frac{1}{1.17(1+0.53(A_{1}^{-1/3}+A_{2}^{-1/3}))}\right] \text {fm} \end{aligned}$$
(45)

and

$$\begin{aligned} R_{0}=R_{1}+R_{2}, \quad R_{i}=1.2A_{i}^{1/3}-0.09, \quad i=1,2. \end{aligned}$$
(46)

1.4 Bass 1980 (Bass 80) potential

Bass 80 potential is formulated as [54, 55]

$$\begin{aligned} V_{N}^{\mathrm {Bass}\,80}(s)=-\frac{R_{1}R_{2}}{R_{1}+R_{2}}\phi (s=r-R_{1}-R_{2}) \,\,\, \text {MeV}, \end{aligned}$$
(47)

where

$$\begin{aligned} \phi (s)=\bigg [0.033 \,\ \text {exp}\left( \frac{s}{3.5}\right) +0.007 \,\ \text {exp}\left( \frac{s}{0.65}\right) \bigg ]^{-1} \end{aligned}$$
(48)

and

$$\begin{aligned} R_{i}= & {} R_{s}\left( 1-\frac{0.98}{R_{s}^{2}}\right) , \nonumber \\ R_{s}= & {} 1.28A_{i}^{1/3}-0.76+0.8A_{i}^{-1/3} \, \text {fm,} \quad i=1,2. \end{aligned}$$
(49)

1.5 Christensen and Winther 1976 (CW 76) potential

CW 76 potential [57] is given by [47]

$$\begin{aligned} V_{N}^{\mathrm {CW}\,76}(r)=-50 \frac{R_{1}R_{2}}{R_{1}+R_{2}} \phi (r-R_{1}-R_{2}) \, \text {MeV}, \end{aligned}$$
(50)

where

$$\begin{aligned} \phi (s)=\text {exp}\left( -\frac{r-R_{1}-R_{2}}{0.63}\right) \end{aligned}$$
(51)

and

$$\begin{aligned} R_{i}=1.233A_{i}^{1/3}-0.978A_{i}^{-1/3} \, \text {fm,} \quad i=1,2. \end{aligned}$$
(52)

1.6 Ngô 1980 (Ngo 80) potential

Ngo 80 potential is written as [37]

$$\begin{aligned}&V_{N}^{\mathrm {Ngo}\,80}(r)= {\bar{R}} \phi (r-C_{1}-C_{2}) \, \text {MeV,} \end{aligned}$$
(53)
$$\begin{aligned}&{\bar{R}}=\frac{C_{1}C_{2}}{C_{1}+C_{2}},\quad C_{i}=R_{i} \bigg [1-\left( \frac{b}{R_{i}}\right) ^2+\cdots \bigg ],\end{aligned}$$
(54)
$$\begin{aligned}&R_{i }=\frac{N R_{ni}+Z R_{pi}}{A_{i}}, \quad i=1,2,\end{aligned}$$
(55)
$$\begin{aligned}&R_{pi}=r_{0pi} A_{i}^{1/3}, \quad R_{ni}=r_{0ni} A_{i}^{1/3},\end{aligned}$$
(56)
$$\begin{aligned}&r_{0pi}=1.128 \,\ \text {fm}, \,\ r_{0ni}{=}1.1375+1.875\times 10^{-4}A_{i}\, \text {fm}.\nonumber \\ \end{aligned}$$
(57)

The universal function \(\phi (s=r-C_{1}-C_{2})\) (in MeV\(/\)fm) is taken as

$$\begin{aligned} \Phi (s)=\left\{ \begin{array}{ll} -33+5.4 (s-s_{0})^{2}, &{}\quad \text {for } s < s_{0}, \\ -33 \,\ \text {exp}[-\frac{1}{5}(s-s_{0})^{2}], &{}\quad \text {for } s \ge s_{0}, \\ s_{0}=-1.6\, \text {fm}. \end{array} \right. \end{aligned}$$

1.7 Denisov (D) potential

D potential is formulated by [55, 58]

$$\begin{aligned} V_{N}^{\mathrm {D}}(r)= & {} -1.989843\frac{R_{1} R_{2}}{R_{1}+R_{2}} \phi (r-R_{1}- R_{2}-2.65)\nonumber \\&\times \bigg [1 + 0.003525139\left( \frac{A_{1}}{A_{2}}+ \frac{A_{2}}{A_{1}}\right) ^{3/2}\nonumber \\&-0.4113263(I_{1} + I_{2})\bigg ] \, \text {MeV}, \end{aligned}$$
(58)

where

$$\begin{aligned} I_{i}=\frac{N_{i}-Z_{i}}{A_{i}} \end{aligned}$$
(59)

and

$$\begin{aligned} R_{i}= & {} R_{ip} \left( 1-\frac{3.413817}{R_{ip}^{2}}\right) \nonumber \\&+ 1.284589\left( I_{i}-\frac{0.4A_{i}}{A_{i}+200}\right) , \end{aligned}$$
(60)
$$\begin{aligned} R_{ip}= & {} 1.24 A_{i}^{1/3} \left( 1+\frac{1.646}{A_{i}}-0.191\left( \frac{A_{i}-2Z_{i}}{A_{i}}\right) \right) ,\nonumber \\&\quad i=1,2. \end{aligned}$$
(61)

\(\phi (s=r-R_{1}-R_{2}-2.65)\) is evaluated as

$$\begin{aligned}&\phi (s) \\&\;=\left\{ \begin{array}{l} 1-\dfrac{s}{0.7881663}+1.229218s^{2}- 0.2234277s^{3}\\ - 0.1038769s^{4} - \dfrac{R_{1} R_{2}}{R_{1}+R_{2}} (0.1844935s^{2}\\ \\ +0.07570101s^{3}+(I_{1}+I_{2})(0.04470645s^{2}+ \\ \\ 0.0334687s^{3})),\quad -5.65\le s\le 0,\\ \\ \left( 1-s^{2} \left( 0.05410106 \dfrac{R_{1} R_{2}}{R_{1}+R_{2}} \text {exp}\left( -\dfrac{s}{1.76058}\right) \right. \right. \\ \\ \left. \left. -0.539542(I_{1}+I_{2}) \text {exp}\left( - \dfrac{s}{2.424408}\right) \right) \right) \\ \\ \text {exp}\left( -\dfrac{s}{0.7881663}\right) ,\quad s\ge 0. \end{array} \right. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aygun, M. A comprehensive theoretical analysis of \(^{12}\hbox {B}+{}^{58}\hbox {Ni}\) elastic scattering measured for the first time by using different density distributions, different nuclear potentials and different cluster approaches. Pramana - J Phys 94, 104 (2020). https://doi.org/10.1007/s12043-020-01979-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01979-w

Keywords

PACS Nos

Navigation