Skip to main content
Log in

Numerical and perturbation solutions of third-grade fluid in a porous channel: Boundary and thermal slip effects

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The steady flow of a third-grade fluid due to pressure gradient is considered between parallel plane walls which are kept at different temperatures. The space between the plane walls is assumed to be a porous medium of constant permeability. The viscosity of the fluid is taken as constant as well as a function of temperature. It is further assumed that the fluid may slip at the wall surfaces. The consequence of this assumption results in non-linear boundary conditions at the plane walls. The temperature field is also supposed to satisfy thermal slip condition at the walls. The governing equations are modelled under these assumptions and the approximate solution is obtained using the perturbation theory. The skin friction coefficient is a decreasing function of slip parameters in the case of temperature-dependent viscosity models while no variation is noted for the case of constant viscosity via boundary slip parameter. The heat transfer rate increases with the boundary slip parameter and decreases with the thermal slip parameter. The validity of the approximated solution is checked by calculating the numerical solution as well. The absolute error is calculated and listed in tabular form in the case of constant and temperature-dependent viscosity via boundary and thermal slip parameters. The influence of various emerging parameters on flow velocity and temperature profile is discussed through graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R S Rivlin and J L Ericksen, Ration. J. Anal. Mech. 4, 323 (1955)

    Google Scholar 

  2. R L Fosdick and K R Rajagopal, R. Proc. Soc. Lond. A 339, 351 (1980)

    ADS  Google Scholar 

  3. J E Dunn and K R Rajagopal, Int. J. Eng. Sci. 33, 689 (1995)

    Google Scholar 

  4. Y Aksoy and M Pakdemirli, Transp. Porous Med. 83, 375 (2010)

    Google Scholar 

  5. T Hayat, F Shahzad and M Ayub, Appl. Math. Model. 31, 2424 (2007)

    Google Scholar 

  6. M Massoudi and I Christic, Int. J. Nonlinear Mech. 30, 687 (1995)

    Google Scholar 

  7. M B Akgul and M Pakdemirli, Int. J. Nonlinear Mech. 43, 985 (2008)

    ADS  Google Scholar 

  8. M Ayub, A Rasheed and T Hayat, Int. J. Non-linear Mech. 41, 2091 (2003)

    Google Scholar 

  9. F Ahmed, Commun. Nonlinear Sci. Numer. Simul. 14, 2848 (2009)

    ADS  Google Scholar 

  10. P Degond, M Lemou and M Pieasso, SIAM J. Appl. Math. 62, 1501 (2002)

  11. T Hayat, R Ellahi, P D Ariel and S Asgher, Nonlinear Dyn. 45, 55 (2006)

    Google Scholar 

  12. T Hayat and F M M Mamboundou, Nonlinear Anal. Real World Appl. 10, 368 (2009)

    MathSciNet  Google Scholar 

  13. C E Maneschy, M Massoudi and A Ghoneimy, Int. J. Nonlinear Mech. 28, 131 (1993)

    Google Scholar 

  14. M Sajid and T Hayat, Transp. Porous Med. 71, 173 (2008)

    Google Scholar 

  15. A M Siddiqui, A Zeb, Q K Ghori and A M Benharbit, Chaos Solitons Fractals 36, 182 (2008)

    ADS  MathSciNet  Google Scholar 

  16. M Yurusoy and M Pakdemirli, Int. J. Nonlinear Mech. 37, 187 (2005)

    Google Scholar 

  17. C Yang, C A Grattoni, A N Muggeridge and R W Zimmerman, J. Colloid Interface Sci. 250, 466 (2002)

    ADS  Google Scholar 

  18. D Tripathi, Acta Astron. 69, 429 (2011)

    Google Scholar 

  19. J Prakash, A K Ansu and D Tripathi, Meccanica 53, 3719 (2018)

    MathSciNet  Google Scholar 

  20. A Sharma, D Tripathi, R K Sharma and A K Tiwari, Phys. A 535, 122 (2019)

    Google Scholar 

  21. P Jayavel, R Jhorar, D Tripathi and M N Azese, J. Braz. Soc. Mech. Sci. 41, 61 (2019)

    Google Scholar 

  22. N S Akbar, D Tripathi and O A Beg, J. Mech. Med. Biol. 16, 1650088 (2016)

    Google Scholar 

  23. J Prakash, E P Siva, D Tripathi and M Kothandapani, Mater. Sci. Semicond. Proc. 100, 290 (2019)

    Google Scholar 

  24. N S Akbar, A B Huda, M B Habib and D Tripathi, Microsyst. Technol. 25, 283 (2019)

    Google Scholar 

  25. D Tripathi, N Ali, T Hayat, M K Chaube and A A Hendi, Appl. Math. Mech. Engl. Ed. 32, 1231 (2011)

    Google Scholar 

  26. J Prakash, E P Siva, D Tripathi, S Kuharat and O A Beg, Renew. Energy 133, 1308 (2019)

    Google Scholar 

  27. J Prakash, D Tripathi, A K Triwari, S M Sait and R Ellahi, Symmetry 11, 868 (2019)

    Google Scholar 

  28. N S Akbar, A W Butt, D Tripathi and O A Bég, Pramana – J. Phys. 88: 52 (2017)

    ADS  Google Scholar 

  29. J Prakash, E P Siva, D Tripathi and O A Bég, Heat Trans. Asian Res., https://doi.org/10.1002/htj.21522

  30. M M Bhatti, M A Yousif, S R Mishra and A Shahid, Pramana – J. Phys. 93: 88 (2019)

  31. R Ellahi, F Hussain, F Ishtiaq and A Hussain, Pramana – J. Phys. 93: 34 (2019)

    ADS  Google Scholar 

  32. S Ghosh and S Mukhopadhyay, Pramana – J. Phys. 92: 93 (2019)

    ADS  Google Scholar 

  33. N Ali, F Nazeer and M Nazeer, Z. Naturforsch. A 73, 265 (2018)

    ADS  Google Scholar 

  34. M Nazeer, F Ahmad, A Saleem, M Saeed, S Naveed, M Shaheen and E A Aidarous, Z. Naturforsch. A 74, 961 (2019)

    ADS  Google Scholar 

  35. M Nazeer, F Ahmad, M Saeed, A Saleem, S Khalid and Z Akram, J. Braz. Soc. Mech. Sci. 41, 518 (2019)

    Google Scholar 

  36. A H Nayfeh, Perturbation methods (Wiley, New York, 1981)

  37. R Ellahi, E Shivanian, S Abbasbandy and T Hayat, Int. J. Numer. Method. H 26, 1433 (2016)

    Google Scholar 

  38. R Ellahi and A Riaz, Math. Comp. Model. 52, 1783 (2010)

    Google Scholar 

  39. R Ellahi, Appl. Math. Model. 37, 1451 (2013)

    MathSciNet  Google Scholar 

  40. S Qasim, Z Ali, F Ahmad, S S Capizzano, M Z Ullah and A Mehmood, Comput. Math. Appl. 71, 1464 (2016)

    MathSciNet  Google Scholar 

  41. N Ali, M Nazeer, T Javed and M Razzaq, Eur. Phys. J. Plus 2, 134 (2019)

    ADS  Google Scholar 

  42. M Nazeer, N Ali and T Javed, J. Porous Media 21(10), 953 (2018)

    Google Scholar 

  43. M Nazeer, N Ali and T Javed, Can. J. Phys. 96(6), 576 (2018)

    ADS  Google Scholar 

  44. N Ali, M Nazeer, T Javed and M A Siddiqui, Heat Trans. Res. 49(5), 457 (2018)

    Google Scholar 

  45. M Nazeer, N Ali and T Javed, Int. J. Numer. Method. H. 28(10), 2404 (2018)

    Google Scholar 

  46. N Ali, M Nazeer, T Javed and F Abbas, Meccanica 53(13), 3279 (2018)

    MathSciNet  Google Scholar 

  47. M Nazeer, N Ali, T Javed and Z Asghar, Eur. Phys. J. Plus 133(10), 423 (2018)

    Google Scholar 

  48. M Nazeer, N Ali and T Javed, Can. J. Phys. 97, 1 (2019)

    ADS  Google Scholar 

  49. M Nazeer, N Ali, T Javed and M Razzaq, Int. J. Hydrog. Energy 44, 953 (2019)

    Google Scholar 

  50. M Nazeer, N Ali, T Javed and M W Nazir, Eur. Phys. J. Plus 134, 204 (2019)

    Google Scholar 

  51. W Ali, M Nazeer and A Zeeshan, 10th International Conference on Computational & Experimental Methods in Multiphase & Complex Flow (Lisbon, Portugal, 21–23 May 2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubbashar Nazeer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazeer, M., Ali, N., Ahmad, F. et al. Numerical and perturbation solutions of third-grade fluid in a porous channel: Boundary and thermal slip effects. Pramana - J Phys 94, 44 (2020). https://doi.org/10.1007/s12043-019-1910-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1910-4

Keywords

PACS Nos

Navigation