Skip to main content
Log in

Successive linearisation approach to analyse thermally radiative stagnation point micropolar nanofluid flow with regression model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The present paper is devoted to the investigation of magnetohydrodynamics (MHD) mixed convection stagnation point flow of a micropolar nanofluid with thermal radiation, microrotation, viscous and Joule dissipations, Brownian and thermophoretic diffusions, etc. The present analysis is done because it contains large potential to deal with many industrial processes such as electrical power generation, nuclear energy plant, melt spinning technique for cooling liquids, astrophysical flows, space vehicles, geothermal extractions, solar system, etc. The numerical solutions of the governing equations are obtained by successive linearisation method (SLM). The influence of various developing parameters, such as thermal radiation parameter, mixed convection parameter, thermophoretic parameter, etc., on the flow field is examined through graphs by accumulating sufficient data using SLM. A comparative study is performed between our results and previously obtained results in the limiting sense. Apart from this, the quadratic multiple regression analysis is performed for skin friction coefficient. It indicates that when the free stream is moving with less velocity than stretching velocity then a small variation in microrotation leads to large perturbation in skin friction in comparison to mixed convection parameter but in the opposite case, the buoyancy force becomes more dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S U S Choi and J A Eastman, No. ANL/MSD/CP-84938; CONF-951135-29 (Argonne National Lab, IL, USA, 1995)

  2. H Masuda, A Ebata and K Teramae, Netsu Bussei 7, 227 (1993)

    Article  Google Scholar 

  3. J Buongiorno J. Heat Transf. 128, 240 (2006)

    Article  Google Scholar 

  4. A V Kuznetsov and D A Nield, Int. J. Heat Mass Transf. 65, 682 (2013)

    Article  Google Scholar 

  5. S K Das, S U S Choi, W Yu and T Pradeep, Nanofluids: Science and technology (John Wiley and Sons, Inc., Hoboken, New Jersey, 2007)

    Book  Google Scholar 

  6. S Kakac and A Pramuanjaroenkij, Int. J. Heat Mass Transf. 52, 3187 (2009)

    Article  Google Scholar 

  7. J A Esfahani, M Akbarzadeh, S Rashidi, M A Rosen and R Ellahi, Int. J. Heat Mass Transf. 109, 1162 (2017)

    Article  Google Scholar 

  8. G S Seth, B Kumar and R Nandkeolyar, J. Nanofluids 8, 620 (2019)

    Article  Google Scholar 

  9. S Rashidi, S Akar, M Bovand and R Ellahi, Renew. Energy 115, 400 (2018)

    Article  Google Scholar 

  10. T Hayat, M Waqas, S A Shehzad and A Alsaedi, Pramana – J. Phys. 86, 3 (2016)

    Article  ADS  Google Scholar 

  11. A C Eringen, J. Math. Mech. 16, 1 (1966)

    MathSciNet  Google Scholar 

  12. A C Eringen, J. Math. Anal. Appl. 38, 480 (1972)

    Article  Google Scholar 

  13. G Lukaszewicz, Micropolar fluids: Theory and applications (Springer Science and Business Media, 1999)

  14. A Mohammadein and R S R Gorla, Int. J. Numer. Method Heat Fluid Flow 11, 50 (2001)

    Article  Google Scholar 

  15. F Ibrahim, I Hassanien and A Bakr, J. Appl. Mech. 72, 468 (2005)

    Article  ADS  Google Scholar 

  16. M Sheikholeslami, M Hatami and D Ganji, J. Mol. Liq. 194, 30 (2014)

    Article  Google Scholar 

  17. M J Uddin, M N Kabir and Y M Alginahi, Comput. Math. Appl. 70, 846 (2015)

    Article  MathSciNet  Google Scholar 

  18. S Iram, M Nawaz and A Ali, Pramana – J. Phys. 91: 47 (2018)

    Article  ADS  Google Scholar 

  19. L J Crane, Z. Angew. Math. Phys. 21, 645 (1970)

    Google Scholar 

  20. R Kandasamy, P Loganathan and P P Arasu, Nucl. Eng. Des. 241, 2053 (2011)

    Article  Google Scholar 

  21. M Turkyilmazoglu, Int. J. Nonlinear Mech. 83, 59 (2016)

    Article  ADS  Google Scholar 

  22. K L Hsiao, Int. J. Heat Mass Transf. 112, 983 (2017)

    Article  Google Scholar 

  23. A A Afify and M A El-Aziz, Pramana – J. Phys. 88: 31 (2017)

    Article  ADS  Google Scholar 

  24. K Khanafer, K Vafai and M Lightstone Int. J. Heat Mass Transf. 46, 3639 (2003)

    Article  Google Scholar 

  25. I Hassanien, A Essawy and N Moursy, Appl. Math. Comput. 152, 323 (2004)

    MathSciNet  Google Scholar 

  26. O D Makinde, W A Khan and Z H Khan, Int. J. Heat Mass Transf. 62, 526 (2013)

    Article  Google Scholar 

  27. M Waqas, M Farooq, M I Khan, A Alsaedi, T Hayat and T Yasmeen, Int. J. Heat Mass Transf. 102, 766 (2016)

    Article  Google Scholar 

  28. K Das, Comput. Math. Appl. 63, 255 (2012)

    Article  MathSciNet  Google Scholar 

  29. G Bourantas and V C Loukopoulos, Int. J. Heat Mass Transf. 68, 35 (2014)

    Article  Google Scholar 

  30. N Bachok, A Ishak and I Pop, Nanoscale Res. Lett. 6, 623 (2011)

    Article  ADS  Google Scholar 

  31. W Ibrahim, B Shankar and M M Nandeppanavar, Int. J. Heat Mass Transf. 56, 1 (2013)

    Article  Google Scholar 

  32. A Mahmood, B Chen and A Ghaffari, J. Magn. Magn. Mater. 416, 329 (2016)

    Article  ADS  Google Scholar 

  33. G S Seth, M K Mishra and R Tripathi, Comput. Appl. Math. 37, 4081 (2018)

    Article  MathSciNet  Google Scholar 

  34. E Azhar, Z Iqbal, S Ijaz and E N Maraj, Pramana – J. Phys. 91: 61 (2018)

    Article  ADS  Google Scholar 

  35. Y J Kim and A G Fedorov, Int. J. Heat Mass Transf. 46, 1751 (2003)

    Article  Google Scholar 

  36. D Pal and G Mandal, Int. J. Mech. Sci. 126, 308 (2017)

    Article  Google Scholar 

  37. S Siddiqa, A Faryad, N Begum, M A Hossain and R S R Gorla, Int. J. Therm. Sci. 111, 215 (2017)

    Article  Google Scholar 

  38. T Hayat, M I Khan, M Waqas, A Alsaedi and M I Khan, Int. J. Hydrogen Energy 42, 16821 (2017)

    Article  Google Scholar 

  39. A V Kuznetsov and D A Nield, Int. J. Therm. Sci. 77, 126 (2014)

    Article  Google Scholar 

  40. S S Motsa and P Sibanda, Comput. Math. Appl. 63, 1197 (2012)

    Article  MathSciNet  Google Scholar 

  41. N T Eldabe and M E Ouaf, Appl. Math. Comput. 177, 561 (2006)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Seth, G.S. & Nandkeolyar, R. Successive linearisation approach to analyse thermally radiative stagnation point micropolar nanofluid flow with regression model. Pramana - J Phys 93, 74 (2019). https://doi.org/10.1007/s12043-019-1834-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1834-z

Keywords

PACS Nos

Navigation